1 |
朱明亮, 顾秀秀, 胡梓义, 等. 新运维时代MODF光纤配线架应用场景研究. 信息技术与信息化, 2020, (5): 117- 119.
|
|
ZHU M L , GU X X , HU Z Y . Research on application scenarios of MODF optical distribution frame in new operation and maintenance era. Information Technology and Informatization, 2020, (5): 117- 119.
|
2 |
MENG Z Y , XU S Z , WANG L C , et al. Defect object detection algorithm for electroluminescence image defects of photovoltaic modules based on deep learning. Energy Science & Engineering, 2022, 10 (3): 800- 813.
doi: 10.1002/ese3.1056
|
3 |
EL-SHAFAI W , ALI A M , EL-RABAIE E S M , et al. Automated COVID-19 detection based on single-image super-resolution and CNN models. Computers, Materials & Continua, 2022, 70 (1): 1141- 1157.
doi: 10.32604/cmc.2022.018547
|
4 |
WANG H , XU Y S , WANG Z N , et al. CenterNet-auto: a multi-object visual detection algorithm for autonomous driving scenes based on improved CenterNet. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7 (3): 742- 752.
doi: 10.1109/TETCI.2023.3235381
|
5 |
ZHANG L G , WANG L , JIN M , et al. Small object detection in remote sensing images based on attention mechanism and multi-scale feature fusion. International Journal of Remote Sensing, 2022, 43 (9): 3280- 3297.
doi: 10.1080/01431161.2022.2089539
|
6 |
PLATT J C . A fast algorithm for training support vector machines. Journal of Information Technology, 1998, 2 (5): 1- 28.
|
7 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 580-587. 10.1109/CVPR.2014.81
|
8 |
GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV). Washington D. C., USA: IEEE Press, 2015: 1440-1448.
|
9 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
10 |
LI G Q , HAO X Y , ZHA L L , et al. An outstanding adaptive multi-feature fusion YOLOv3 algorithm for the small target detection in remote sensing images. Pattern Analysis and Applications, 2022, 25 (4): 951- 962.
doi: 10.1007/s10044-022-01072-5
|
11 |
窦允冲, 侯进, 曾雷鸣, 等. 基于反馈机制与空洞卷积的道路小目标检测网络. 计算机工程, 2023, 49 (1): 287- 294.
doi: 10.19678/j.issn.1000-3428.0063575
|
|
DOU Y C , HOU J , ZENG L M , et al. Road small target detection network based on feedback mechanism and dilated convolution. Computer Engineering, 2023, 49 (1): 287- 294.
doi: 10.19678/j.issn.1000-3428.0063575
|
12 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Washington D. C., USA: IEEE Press, 2017: 6517-6525. 10.1109/CVPR.2017.690
|
13 |
戚玲珑, 高建瓴. 基于改进YOLOv7的小目标检测. 计算机工程, 2023, 49 (1): 41- 48.
doi: 10.19678/j.issn.1000-3428.0065942
|
|
QI L L , GAO J L . Small object detection based on improved YOLOv7. Computer Engineering, 2023, 49 (1): 41- 48.
doi: 10.19678/j.issn.1000-3428.0065942
|
14 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 21-37. 10.1007/978-3-319-46448-0_2
|
15 |
苏东, 余宁梅. 基于深度学习的OBD端口占用状态自动识别算法. 北京邮电大学学报, 2019, 42 (6): 49- 57.
doi: 10.13190/j.jbupt.2019-180
|
|
SU D , YU N M . Research on automatic recognition algorithm of OBD port occupancy state based on deep learning. Journal of Beijing University of Posts and Telecommunications, 2019, 42 (6): 49- 57.
doi: 10.13190/j.jbupt.2019-180
|
16 |
何景晖, 敖银辉, 赵伟良. 光缆交接箱端口状态的视觉检测方法. 微处理机, 2021, 42 (2): 53- 57.
doi: 10.3969/j.issn.1002-2279.2021.02.014
|
|
HE J H , AO Y H , ZHAO W L . A visual detection method for port state of optical cable cross connection cabinet. Microprocessors, 2021, 42 (2): 53- 57.
doi: 10.3969/j.issn.1002-2279.2021.02.014
|
17 |
|
|
SU D. Research on automatic acquisition algorithm of port resources in passive optical network[D]. Xi'an: Xi'an University of Technology, 2021. (in Chinese) 10.27398/d.cnki.gxalu.2021.000024
|
18 |
|
|
LI M. State recognition and system development of optical box based on image processing[D]. Guangzhou: Guangdong University of Technology, 2020. (in Chinese) 10.27029/d.cnki.ggdgu.2020.002130
|
19 |
|
|
HUANG K. Port state identification and system development of optical fiber transmission box based on computer vision[D]. Guangzhou: Guangdong University of Technology, 2022. (in Chinese) 10.27029/d.cnki.ggdgu.2022.001907
|
20 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475. 10.1109/CVPR52729.2023.00721
|
21 |
YU Z P , HUANG H B , CHEN W J , et al. YOLO-FaceV2: a scale and occlusion aware face detector. Pattern Recognition, 2024, 155, 110714.
doi: 10.1016/j.patcog.2024.110714
|
22 |
|
23 |
OUYANG D L, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of 2023 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Washington D. C., USA: IEEE Press, 2023: 1-5. 10.1109/ICASSP49357.2023.10096516
|
24 |
QIU S, XU X M, CAI B L. FReLU: flexible rectified linear units for improving convolutional neural networks[C]//Proceedings of the 24th International Conference on Pattern Recognition (ICPR). Washington D. C., USA: IEEE Press, 2018: 1223-1228. 10.1109/ICPR.2018.8546022
|
25 |
|