作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (9): 25-37. doi: 10.19678/j.issn.1000-3428.0069836

• AI算力赋能的车载边缘计算 • 上一篇    下一篇

基于空地协同的动态车载边缘任务卸载方法

崔萌萌1,2, 施静燕1,*(), 项昊龙1,2   

  1. 1. 南京信息工程大学软件学院,江苏 南京 210044
    2. 江苏省先进计算与智能服务工程技术研究中心,江苏 南京 210044
  • 收稿日期:2024-05-11 修回日期:2024-09-01 出版日期:2025-09-15 发布日期:2024-11-05
  • 通讯作者: 施静燕
  • 基金资助:
    国家自然科学基金(62372242); 江苏省自然科学基金(BK20211284)

Dynamic Vehicle Edge Task Offloading Method Based on Air-Ground Collaboration

CUI Mengmeng1,2, SHI Jingyan1,*(), XIANG Haolong1,2   

  1. 1. School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
    2. Jiangsu Province Engineering Research Center of Advanced Computing and Intelligent Services, Nanjing 210044, Jiangsu, China
  • Received:2024-05-11 Revised:2024-09-01 Online:2025-09-15 Published:2024-11-05
  • Contact: SHI Jingyan

摘要:

为了进一步优化车载服务的服务质量(QoS),移动边缘计算(MEC)被深度整合于车联网(IoV)中,旨在为车辆提供地理位置较近的计算资源,降低任务处理延迟和能耗。然而,传统的MEC服务器部署主要依赖于地面基站(BS),这不仅导致高昂的部署成本,而且限制其覆盖范围,难以确保为所有车辆提供无间断服务。为了应对上述挑战,空地协同IoV作为一种新兴的技术方案应运而生。无人机(UAV)能够借助其视距链路的灵活性动态地协助路边单元(RSU),为车辆用户提供更为灵活的计算资源,进而保障车载服务的连续性和高效性。提出一种基于空地协同的动态车载边缘任务卸载方法(DVETOM)。该方法采用车-路-空架构,构建了车辆到RSU(V2R)链路和车辆到UAV(V2U)链路。针对车辆任务的本地执行、卸载至RSU执行和卸载至UAV执行3种模式分别构建传输模型和计算模型,并以最小化系统时延和能耗作为联合优化目标构建目标函数。DVETOM将任务卸载问题转化为马尔可夫决策过程(MDP),基于深度强化学习(DRL)的分布式深度确定性策略梯度(D4PG)算法优化任务卸载策略。与5种基准方法进行对比,实验结果表明,DVETOM在提升车辆用户QoS的同时,在降低系统时延方面优于现有方法3.45%~23.7%,在降低系统能耗方面优于现有方法5.8%~23.47%。综上所述,DVETOM有效地优化了IoV中的车载边缘任务卸载,为IoV用户提供了更高效、更节能的服务解决方案,展现了其在智能交通系统领域的广泛应用潜力。

关键词: 车联网, 边缘计算, 空地协同, 任务卸载, 深度强化学习

Abstract:

To optimize Quality of Service (QoS), Mobile Edge Computing (MEC) has been deeply integrated into the Internet of Vehicle (IoV) to provide geographically proximal computing resources for vehicles, thereby reducing task processing latency and energy consumption. However, traditional MEC server deployment relies primarily on terrestrial Base Stations (BSs), resulting in high deployment costs and limited coverage, making it difficult to ensure uninterrupted services for all vehicles. Air-ground collaborative IoV technology has emerged as a solution to these challenges. Unmanned Aerial Vehicles (UAVs) can dynamically assist Road-Side Units (RSUs) using their flexibility in line-of-sight links, providing more flexible computing resources for vehicular users, thereby ensuring the continuity and efficiency of in-vehicle services. Therefore, this study proposes a Dynamic Vehicular Edge Task Offloading Method (DVETOM) based on air-ground collaboration. This method adopts a vehicle-road-air architecture, establishing Vehicle-to-RSU (V2R) and Vehicle-to-UAV (V2U) links. Transmission and computation models are constructed for three modes: local execution of vehicular tasks, offloading tasks to the RSU, and offloading tasks to the UAV. An objective function is established with the joint optimization goal of minimizing system latency and energy consumption. DVETOM transforms the task offloading problem into a Markov Decision Process (MDP) and optimizes the task offloading strategy by using the Distributed Deep Deterministic Policy Gradient (D4PG) algorithm based on Deep Reinforcement Learning (DRL). Compared with 5 benchmark methods, experimental results show that DVETOM outperforms existing methods by 3.45%—23.7% in terms of reducing system latency and 5.8%—23.47% in terms of reducing system energy consumption while improving QoS for vehicular users. In conclusion, DVETOM enhances the offloading of vehicular edge computing tasks within the IoV effectively. It offers IoV users a more efficient and energy-conserving solution, showcasing its extensive potential for application in intelligent transportation systems.

Key words: Internet of Vehicle (IoV), edge computing, air-ground collaboration, task offloading, Deep Reinforcement Learning (DRL)