1 |
ZHAO D B , DAI Y J , ZHANG Z . Computational intelligence in urban traffic signal control: a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42 (4): 485- 494.
|
2 |
ZHANG L D , ZHU W X . Delay-feedback control strategy for reducing CO2 emission of traffic flow system. Physica A: Statistical Mechanics and Its Applications, 2015, 428, 481- 492.
doi: 10.1016/j.physa.2015.01.077
|
3 |
ZHANG L, WU Q, SHEN J, et al. Expression might be enough: representing pressure and demand for reinforcement learning based traffic signal control[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2022: 26645-26654.
|
4 |
ZENG J H, HU J M, ZHANG Y. Adaptive traffic signal control with deep recurrent Q-learning[C]//Proceedings of the IEEE Intelligent Vehicles Symposium (IV). Washington D.C., USA: IEEE Press, 2018: 1215-1220.
|
5 |
NAWAR M, FARES A, AL-SAMMAK A. Rainbow deep reinforcement learning agent for improved solution of the traffic congestion[C]//Proceedings of the 7th International Japan-Africa Conference on Electronics, Communications, and Computations. Washington D.C., USA: IEEE Press, 2019: 80-83.
|
6 |
WEI H, CHEN C C, ZHENG G J, et al. PressLight: learning max pressure control to coordinate traffic signals in arterial network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 1290-1298.
|
7 |
CHEN C C, WEI H, XU N, et al. Toward A thousand lights: decentralized deep reinforcement learning for large-scale traffic signal control[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 3414-3421.
|
8 |
OROOJLOOY A, NAZARI M, HAJINEZHAD D, et al. AttendLight: universal attention-based reinforcement learning model for traffic signal control[EB/OL]. [2024-01-19]. https://arxiv.org/abs/2010.05772.
|
9 |
DU W L, YE J Y, GU J Y, et al. SafeLight: a reinforcement learning method toward collision-free traffic signal control[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2023: 14801-14810.
|
10 |
HAN X, ZHAO X Y, ZHANG L, et al. Mitigating action hysteresis in traffic signal control with traffic predictive reinforcement learning[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2023: 673-684.
|
11 |
BUSCH J V S, VOELCKNER R, SOSSALLA P, et al. Deep reinforcement learning for the joint control of traffic light signaling and vehicle speed advice[C]//Proceedings of the International Conference on Machine Learning and Applications. Washington D.C., USA: IEEE Press, 2023: 182-187.
|
12 |
LIU H X , WU X K , MA W T , et al. Real-time queue length estimation for congested signalized intersections. Transportation Research Part C: Emerging Technologies, 2009, 17 (4): 412- 427.
doi: 10.1016/j.trc.2009.02.003
|
13 |
COMERT G , CETIN M . Analytical evaluation of the error in queue length estimation at traffic signals from probe vehicle data. IEEE Transactions on Intelligent Transportation Systems, 2011, 12 (2): 563- 573.
doi: 10.1109/TITS.2011.2113375
|
14 |
SHENG Z H, XUE S B, XU Y W, et al. Real-time queue length estimation with trajectory reconstruction using surveillance data[C]//Proceedings of the 16th International Conference on Control, Automation, Robotics and Vision. Washington D.C., USA: IEEE Press, 2020: 124-129.
|
15 |
BAE B , KIM H , LIM H , et al. Missing data imputation for traffic flow speed using spatio-temporal cokriging. Transportation Research Part C: Emerging Technologies, 2018, 88, 124- 139.
doi: 10.1016/j.trc.2018.01.015
|
16 |
ZHANG W B , ZHANG P L , YU Y H , et al. Missing data repairs for traffic flow with self-attention generative adversarial imputation net. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (7): 7919- 7930.
doi: 10.1109/TITS.2021.3074564
|
17 |
ZHANG K P , ZHOU F , WU L , et al. Semantic understanding and prompt engineering for large-scale traffic data imputation. Information Fusion, 2024, 102, 102038.
doi: 10.1016/j.inffus.2023.102038
|
18 |
COOLS S B , GERSHENSON C , D'HOOGHE B . Self-organizing traffic lights: a realistic simulation. Berlin, Germany: Springer, 2013: 45- 55.
|
19 |
傅明建, 郭福强. 基于深度强化学习的无信号灯路口决策研究. 计算机工程, 2024, 50 (5): 91- 99.
doi: 10.19678/j.issn.1000-3428.0068112
|
|
FU M J , GUO F Q . Research on decision-making at intersection without traffic lights based on deep reinforcement learning. Computer Engineering, 2024, 50 (5): 91- 99.
doi: 10.19678/j.issn.1000-3428.0068112
|
20 |
唐慕尧, 周大可, 李涛. 结合状态预测的深度强化学习交通信号控制. 计算机应用研究, 2022, 39 (8): 2311- 2315.
|
|
TANG M Y , ZHOU D K , LI T . State prediction based deep reinforcement learning for traffic signal control. Application Research of Computers, 2022, 39 (8): 2311- 2315.
|
21 |
LIN J F, ZHU Y Y, LIU L B, et al. DenseLight: efficient control for large-scale traffic signals with dense feedback[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence. [S. l. ]: IJCAI, 2023: 6058-6066.
|
22 |
TAN H C , FENG G D , FENG J S , et al. A tensor-based method for missing traffic data completion. Transportation Research, Part C: Emerging Technologies, 2013, 28, 15- 27.
doi: 10.1016/j.trc.2012.12.007
|
23 |
WANG S Q , GAO M , WANG Z W , et al. Fine-grained spatial-temporal representation learning with missing data completion for traffic flow prediction. Berlin, Germany: Springer, 2021.
|
24 |
SASSELLA A, ABBRACCIAVENTO F, FORMENTIN S, et al. On queue length estimation in urban traffic intersections via inductive loops[C]//Proceedings of the American Control Conference. Washington D.C., USA: IEEE Press, 2023: 1135-1140.
|
25 |
WANG Z P, ZHUANG D Y, LI Y K, et al. ST-GIN: an uncertainty quantification approach in traffic data imputation with spatio-temporal graph attention and bidirectional recurrent united neural networks[C]//Proceedings of the IEEE 26th International Conference on Intelligent Transportation Systems. Washington D.C., USA: IEEE Press, 2023: 1454-1459.
|
26 |
GENDERS W , RAZAVI S . Evaluating reinforcement learning state representations for adaptive traffic signal control. Procedia Computer Science, 2018, 130, 26- 33.
doi: 10.1016/j.procs.2018.04.008
|
27 |
WU P , XU L H , HUANG Z L . Imputation methods used in missing traffic data: a literature review. Berlin, Germany: Springer, 2020.
|
28 |
YU W H, TAN J, KAREN LIU C, et al. Preparing for the unknown: learning a universal policy with online system identification[EB/OL]. [2024-01-19]. https://arxiv.org/abs/1702.02453.
|
29 |
YU L A , LI M X , LIU X J . A two-stage case-based reasoning driven classification paradigm for financial distress prediction with missing and imbalanced data. Expert Systems with Applications, 2024, 249, 123745.
doi: 10.1016/j.eswa.2024.123745
|
30 |
KALAPOS A, GOR C, MONI R, et al. Sim-to-real reinforcement learning applied to end-to-end vehicle control[C]//Proceedings of the 23rd International Symposium on Measurement and Control in Robotics. Washington D.C., USA: IEEE Press, 2020: 1-6.
|
31 |
|
32 |
WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]//Proceedings of the 33rd International Conference on Machine Learning. New York, USA: ACM Press, 2016: 1995-2003.
|
33 |
BENGIO Y , COURVILLE A , VINCENT P . Representation learning: a review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (8): 1798- 1828.
doi: 10.1109/TPAMI.2013.50
|
34 |
YU Y, BUCHANAN S, PAI D, et al. White-box transformers via sparse rate reduction[C]//Proceedings of Advances in Neural Information Processing Systems. New York, USA: Curran Associates Inc., 2023: 9422-9457.
|
35 |
PAN S J , YANG Q . A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 2010, 22 (10): 1345- 1359.
doi: 10.1109/TKDE.2009.191
|
36 |
ZHANG H C, FENG S Y, LIU C, et al. CityFlow: a multi-agent reinforcement learning environment for large scale city traffic scenario[C]//Proceedings of the World Wide Web Conference. New York, USA: ACM Press, 2019: 3620-3624.
|
37 |
BAN X G , HAO P , SUN Z B . Real time queue length estimation for signalized intersections using travel times from mobile sensors. Transportation Research, Part C: Emerging Technologies, 2011, 19 (6): 1133- 1156.
doi: 10.1016/j.trc.2011.01.002
|