[1] YOUSEFNEZHAD N, MALHI A, FRÄMLING K. Automated IoT device identification based on full packet information using real-time network traffic[J]. Sensors, 2021, 21(8): 2660. [2] BAO J Q, HAMDAOUI B, WONG W K. IoT device type identification using hybrid deep learning approach for increased IoT security[C]//Proceedings of the International Wireless Communications and Mobile Computing (IWCMC). Washington D.C., USA: IEEE Press, 2020: 565-570. [3] KUMAR V, PAUL K. Device fingerprinting for cyber-physical systems: a survey[J]. ACM Computing Surveys, 2023, 55(14s): 1-41. [4] VAIDYA G, PRABHAKAR T V, GNANI N, et al. Sensor identification via acoustic physically unclonable function[J]. Digital Threats: Research and Practice, 2023, 4(2): 1-25. [5] LI J C, MENG Y, ZHANG L, et al. MagFingerprint: a magnetic based device fingerprinting in wireless charging[C]//Proceedings of the IEEE Conference on Computer Communications. Washington D.C., USA: IEEE Press, 2023: 1-10. [6] BERDICH A, GROZA B, MAYRHOFER R, et al. Sweep-to-unlock: fingerprinting smartphones based on loudspeaker roll-off characteristics[J]. IEEE Transactions on Mobile Computing, 2023, 22(4): 2417-2434. [7] BERDICH A, GROZA B. Smartphone camera identification from low-mid frequency DCT coefficients of dark images[J]. Entropy, 2022, 24(8): 1158. [8] YANG D L, XING G L, HUANG J, et al. QID: robust mobile device recognition via a multi-coil Qi-wireless charging system[J]. ACM Transactions on Internet of Things, 2022, 3(2): 1-27. [9] LIU J Q, HU A Q, LI S. Spectrum-based fingerprint extraction and identification method of 100 m Ethernet card[C]//Proceedings of the 6th International Conference on Cryptography, Security and Privacy (CSP). Washington D.C., USA: IEEE Press, 2022: 102-107. [10] PARMAKSIZ H, KARAKUZU C. A review of recent developments on secure authentication using RF fingerprints techniques[J]. Sakarya University Journal of Computer and Information Sciences, 2025, 5(3): 278-303. [11] ALIYU M B, HAFEEZ M, JOHNSON A. LoRa-PUF: a two-step security solution for LoRaWAN[C]//Proceedings of the IEEE 97th Vehicular Technology Conference (VTC2023-Spring). Washington D.C., USA: IEEE Press, 2023: 1-6. [12] FANG D W, HU A Q, SHI J X. An all-data-segment radio frequency fingerprint extraction method based on cross-power spectrum[C]//Proceedings of the 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE). Washington D.C., USA: IEEE Press, 2022: 384-388. [13] AHMED C M, MATHUR A P, OCHOA M. NoiSense print[J]. ACM Transactions on Privacy and Security, 2021, 24(1): 1-35. [14] LIU Y N, LI T, HU A Q. A correlation spectrum-based fingerprint extraction method for 1000BASE-T devices[C]//Proceedings of the 8th International Conference on Signal and Image Processing (ICSIP). Washington D.C., USA: IEEE Press, 2023: 486-490. [15] MICHAELS A J, PALUKURU V S S, FLETCHER M J, et al. CAN bus message authentication via co-channel RF watermark[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 3670-3686. [16] 韩晓艺. 基于多维射频指纹的无线设备身份识别研究[D]. 北京: 北京交通大学, 2021. HAN X Y. Research on wireless device identity recognition based on multi-dimensional radio frequency fingerprint[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese) [17] 宋宇波, 陈冰, 郑天宇, 等. 基于混合特征指纹的无线设备身份识别方法[J]. 计算机研究与发展, 2021, 58(11): 2374-2399. SONG Y B, CHEN B, ZHENG T Y, et al. Hybrid feature fingerprint-based wireless device identification[J]. Journal of Computer Research and Development, 2021, 58(11): 2374-2399. (in Chinese) [18] 曹来成, 赵建军, 崔翔, 等. 基于余弦测度下k-means的网络空间终端设备识别[J]. 中国科学院大学学报, 2016, 33(4): 562-569. CAO L C, ZHAO J J, CUI X, et al. Cyberspace device identification based on k-means with cosine distance measure[J]. Journal of University of Chinese Academy of Sciences, 2016, 33(4): 562-569. (in Chinese) [19] 祝博宇, 陈霄, 沙乐天, 等. 基于流量和文本指纹的两层物联网设备分类识别模型[J]. 计算机科学, 2023, 50(8): 304-313. ZHU B Y, CHEN X, SHA L T, et al. Two-layer IoT device classification recognition model based on traffic and text fingerprints[J]. Computer Science, 2023, 50(8): 304-313. (in Chinese) [20] Spirent. Testing, assurance, cybersecurity[EB/OL].[2024-04-29]. https://www.spirent.cn/products/testcenter-hardware. [21] EIDSON J, LEE K. IEEE 1588 standard for a precision clock synchronization protocol for networked measurement and control systems[C]//Proceedings of the 2nd ISA/IEEE Sensors for Industry Conference. Washington D.C., USA: IEEE Press, 2003: 98-105. [22] BREUER J, VIGNER V, ROZTO AČG IL J. Precise packet delay measurement in an Ethernet network[J]. Measurement, 2014, 54: 215-221. [23] ANGRISANI L, VENTRE G, PELUSO L, et al. Measurement of processing and queuing delays introduced by an open-source router in a single-hop network[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(4): 1065-1076. [24] KENDALL A, BADRINARAYANAN V, CIPOLLA R. Bayesian segnet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding[EB/OL].[2024-04-29]. https://arxiv.org/abs/1511.02680. [25] GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning[C]//Proceedings of International Conference on Machine Learning.[S. l.]: PMLR, 2016: 1050-1059. [26] ROMERO A, GATTA C, CAMPS-VALLS G. Unsupervised deep feature extraction for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1349-1362. [27] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C]//Proceedings of International Conference on Machine Learning.[S. l.]: PMLR, 2018: 4393-4402. [28] XU H W, FENG Y, CHEN J, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in Web applications[C]//Proceedings of the 2018 Conference on World Wide Web. New York, USA: ACM Press, 2018: 187-196. [29] 刘芹, 史桢港, 崔竞松. 基于行为指纹的网络设备识别方法[J]. 武汉科技大学学报, 2023, 46(1): 64-74. LIU Q, SHI Z G, CUI J S. A behavior fingerprint-based identification method for network devices[J]. Journal of Wuhan University of Science and Technology, 2023, 46(1): 64-74. (in Chinese) [30] GUO W F, SONG W W, NIU X J, et al. Foundation and performance evaluation of real-time GNSS high-precision one-way timing system[J]. GPS Solutions, 2019, 23(1): 23. [31] KINGMA D P, SALIMANS T, WELLING M. Variational dropout and the local reparameterization trick[C]// Proceedings of Advances in Neural Information Processing Systems. New York, USA: ACM Press, 2015: 2575-2583. [32] ZHANG C, BUTEPAGE J, KJELLSTROM H, et al. Advances in variational inference[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 2008-2026. [33] YOUSEFI-AZAR M, VARADHARAJAN V, HAMEY L, et al. Autoencoder-based feature learning for cyber security applications[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington D.C., USA: IEEE Press, 2017: 3854-3861. [34] NG A. Sparse autoencoder[EB/OL].[2024-04-29]. https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf. [35] KOSTAS K, JUST M, LONES M A. IoTDevID: a behavior-based device identification method for the IoT[J]. IEEE Internet of Things Journal, 2022, 9(23): 23741-23749. |