[1] 叶铱雷, 曹斌, 范菁, 等.面向任务型多轮对话的粗粒度意图识别方法[J].小型微型计算机系统, 2020, 41(8):1620-1626. YE Y L, CAO B, FAN J, et al.Coarse-grained intent recognition method for task-oriented multi-turn dialogue[J].Journal of Chinese Computer Systems, 2020, 41(8):1620-1626.(in Chinese) [2] 赵阳洋, 王振宇, 王佩, 等.任务型对话系统研究综述[J].计算机学报, 2020, 43(10):1862-1896. ZHAO Y Y, WANG Z Y, WANG P, et al.A survey on task-oriented dialogue systems[J].Chinese Journal of Computers, 2020, 43(10):1862-1896.(in Chinese) [3] 车万翔, 张伟男.人机对话系统综述[J].人工智能, 2018, 5(1):76-82. CHE W X, ZHANG W N.Overview of man-machine conversation system[J].AI-View, 2018, 5(1):76-82.(in Chinese) [4] 刘其开, 姜代红, 李文吉.基于分段损失的生成对抗网络[J].计算机工程, 2019, 45(5):155-160, 168. LIU Q K, JIANG D H, LI W J.Generative adversarial network based on piecewise loss[J].Computer Engineering, 2019, 45(5):155-160, 168.(in Chinese) [5] 朱海琦, 李宏, 李定文.基于单幅图像学习的生成对抗网络模型[J].计算机工程, 2021, 47(8):271-276, 283. ZHU H Q, LI H, LI D W.Generative adversarial network model based on single image learning[J].Computer Engineering, 2021, 47(8):271-276, 283.(in Chinese) [6] YU Y, QU W Y, LI N, et al.Open-category classification by adversarial sample generation[EB/OL].[2022-01-15].https://arxiv.org/abs/1705.08722. [7] HENDRYCKS D, GIMPEL K.A baseline for detecting misclassified and out-of-distribution examples in neural networks[EB/OL].[2022-01-15].https://arxiv.org/abs/1610.02136. [8] SHU L, XU H, LIU B.DOC:deep open classification of text documents[EB/OL].[2022-01-15].https://arxiv.org/abs/1709.08716. [9] LIN T E, XU H.Deep unknown intent detection with margin loss[EB/OL].[2022-01-15].https://arxiv.org/abs/1906.00434. [10] YAN G F, FAN L, LI Q M, et al.Unknown intent detection using Gaussian mixture model with an application to zero-shot intent classification[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg, USA:Association for Computational Linguistics, 2020:1-10. [11] WANG H, WANG Y T, ZHOU Z, et al.CosFace:large margin cosine loss for deep face recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:5265-5274. [12] WAN W T, ZHONG Y Y, LI T P, et al.Rethinking feature distribution for loss functions in image classification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:9117-9126. [13] BREUNIG M M, KRIEGEL H P, NG R T, et al.LOF:identifying density-based local outliers[C]//Proceedings of ACM SIGMOD International Conference on Management of Data.New York, USA:ACM Press, 2000:93-104. [14] WEN Y D, ZHANG K P, LI Z F, et al.A discriminative feature learning approach for deep face recognition[M].Berlin, Germany:Springer, 2016. [15] AN J, CHO S.Variational autoencoder based anomaly detection using reconstruction probability[EB/OL].[2022-01-15].http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf. [16] CHEN Z M, YEO C K, LEE B S, et al.Autoencoder-based network anomaly detection[C]//Proceedings of Wireless Telecommunications Symposium.Washington D.C., USA:IEEE Press, 2018:1-5. [17] ZHAI J H, ZHANG S F, CHEN J F, et al.Autoencoder and its various variants[C]//Proceedings of IEEE International Conference on Systems, Man, and Cybernetics.Washington D.C., USA:IEEE Press, 2018:415-419. [18] WELD H, HUANG X, LONG S, et al.A survey of joint intent detection and slot-filling models in natural language understanding[EB/OL].[2022-01-15].https://arxiv.org/pdf/2101.08091.pdf. [19] XU P Y, SARIKAYA R.Convolutional neural network based triangular CRF for joint intent detection and slot filling[C]//Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding.Washington D.C., USA:IEEE Press, 2013:78-83. [20] LIU B, LANE I.Attention-based recurrent neural network models for joint intent detection and slot filling[C]//Proceedings of InterSpeech 2016.[S.l.]:ISCA, 2016:1-10. [21] CHEN Q, ZHUO Z, WANG W.BERT for joint intent classification and slot filling[EB/OL].[2022-01-15].https://arxiv.org/abs/1902.10909. [22] ZHANG Z C, ZHANG Z W, CHEN H Y, et al.A joint learning framework with BERT for spoken language understanding[J].IEEE Access, 2016, 7:168849-168858. [23] ZHANG Z, TAKANOBU R, ZHU Q, et al.Recent advances and challenges in task-oriented dialog systems[J].Science China Technological Sciences, 2020, 63(10):2011-2027. [24] SABOKROU M, KHALOOEI M, FATHY M, et al.Adversarially learned one-class classifier for novelty detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3379-3388. [25] COUCKE A, SAADE A, BALL A, et al.SNIPS voice platform:an embedded spoken language understanding system for private-by-design voice interfaces[EB/OL].[2022-01-15].https://arxiv.org/abs/1805.10190. [26] HEMPHILL C T, GODFREY J J, DODDINGTON G R.The ATIS spoken language systems pilot corpus[C]//Proceedings of the Workshop on Speech and Natural Language.Philadelphia, USA:Association for Computational Linguistics, 1990:96-101. |