[1] |
CHANDOLA V,MITHAL V,KUMAR V.Comparative evaluation of anomaly detection techniques for sequence data[C]//Proceedings of International Conference on Data Mining.Berlin,Germany:Springer,2008:743-748.
|
[2] |
CHANDOLA V,BANERJEE A,KUMAR V.Anomaly detection:a survey[J].ACM Computing Surveys,2009,41(3):1-58.
|
[3] |
ANAVA O,HAZAN E,ZEEVI A.Online time series prediction with missing data[C]//Proceedings of Interna-tional Conference on Machine Learning.[S.l.]:PMLR,2015:2191-2199.
|
[4] |
MALHOTRA P,RAMAKRISHNAN A,ANAND G,et al.LSTM-based encoder-decoder for multi-sensor anomaly detection[EB/OL].(2016-06-01)[2020-01-02].https://arxiv.org/pdf/1607.00148.pdf.
|
[5] |
TAO Tao,ZHOU Xi,MA Bo,et al.Abnormal time series data detection of gas station by Seq2Seq model based on bidirectional long short-term memory[J].Journal of Computer Applications,2019,39(3):924-929.(in Chinese)陶涛,周喜,马博,等.基于双向LSTM的Seq2Seq模型在加油站时序数据异常检测中的应用[J].计算机应用,2019,39(3):924-929.
|
[6] |
ZHANG Qi,HU Yupeng,JI Cun,et al.Edge computing application:real-time anomaly detection alogorithm for sensing data[J].Journal of Computer Research and Development,2018,55(3):524-536.(in Chinese)张琪,胡宇鹏,嵇存,等.边缘计算应用:传感数据异常实时检测算法[J].计算机研究与发展,2018,55(3):524-536.
|
[7] |
GAO Jiawei,LIU Jianmin.An anomaly detection algorithm for time-series data flow oriented to trajectory information[J].Computer Engineering,2018,44(5):25-32,46.(in Chinese)高嘉伟,刘建敏.一种面向轨迹信息的时序数据流异常检测算法[J].计算机工程,2018,44(5):25-32,46.
|
[8] |
PAHL M O,AUBET F X.All eyes on you:distributed multi-dimensional IoT microservice anomaly detection[C]//Proceedings of the 14th International Conference on Network and Service Management.Washington D.C.,USA:IEEE Press,2018:72-80.
|
[9] |
ALRAWASHDEH K,PURDY C.Toward an online anomaly intrusion detection system based on deep learning[C]//Proceedings of International Conference on Machine Learning and Applications.Washington D.C.,USA:IEEE Press,2016:1-5.
|
[10] |
YU Zhenbo,LIU Guangcan,LIU Qingshan,et al.Spatio-temporal convolutional features with nested LSTM for facial expression recognition[J].Neurocomputing,2018,317:50-57.
|
[11] |
FENG Hui.Study on visual attention mechanism and its applications[D].Beijing:North China Electric Power University,2011.(in Chinese)冯辉.视觉注意力机制及其应用研究[D].北京:华北电力大学,2011.
|
[12] |
DESIMONE R,DUNCAN J S.Neural mechanisms of selec-tive visual attention[J].Annual Review of Neuroscience,1995,18(1):193-222.
|
[13] |
SHI Weihang,LIN Nan.A joint classification learning algorithm for feature sequences of time-series data[J].Computer Engineering,2016,42(6):196-200,207.(in Chinese)史苇杭,林楠.一种联合的时序数据特征序列分类学习算法[J].计算机工程,2016,42(6):196-200,207.
|
[14] |
VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[EB/OL].(2017-06-12)[2020-01-02].https://arxiv.org/pdf/1706.03762.pdf.
|
[15] |
JIANG Hua,ZHANG Hongfu,LUO Yidi,et al.Adaptive threshold network traffic anomaly detection based on KL distance[J].Computer Engineering,2019,45(4):108-113,118.(in Chinese)蒋华,张红福,罗一迪,等.基于KL距离的自适应阈值网络流量异常检测[J].计算机工程,2019,45(4):108-113,118.
|
[16] |
HUNDMAN K,CONSTANTINOU V,LAPORTE C,et al.Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference.New York,USA:ACM Press,2018:387-395.
|
[17] |
BIRGELEN A,NIGGEMANN O.Enable learning of hybrid timed automata in absence of discrete events through self-organizing maps[M]//NIGGEMANN O,SCHÜLLER P.IMPROVE-innovative modelling approaches for production systems to raise validatable efficiency.Berlin,Germany:Springer,2018:37-54.
|
[18] |
HRANISAVLJEVIC N,NIGGEMANN O,MAIER A.A novel anomaly detection algorithm for hybrid production systems based on deep learning and timed automata[C]//Proceedings of International Workshop on the Principles of Diagnosis.Denver,USA:[s.n.],2016:1-5.
|
[19] |
TATBUL N,LEE T J,ZDONIK S,et al.Precision and recall for time series[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2018:1924-1934.
|
[20] |
BAYDOGAN M G,RUNGER G C.Time series representa-tion and similarity based on local autopatterns[J].Data Mining and Knowledge Discovery,2016,30(2):476-509.
|