作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (12): 311-323. doi: 10.19678/j.issn.1000-3428.0069963

• 图形图像处理 • 上一篇    下一篇

星载FlexRay数据总线自主可控IP核的设计与验证

李云佳赟1,2, 安军社1,2,*(), 周莉1,2   

  1. 1. 中国科学院国家空间科学中心复杂航天系统电子信息技术重点实验室, 北京 100190
    2. 中国科学院大学计算机科学与技术学院, 北京 100049
  • 收稿日期:2024-06-04 修回日期:2024-07-13 出版日期:2025-12-15 发布日期:2024-09-20
  • 通讯作者: 安军社
  • 基金资助:
    国家重点研发计划(2022YFF0503900)

Design and Verification of Autonomous and Controllable IP Core for Satellite-Borne FlexRay Data Bus

LI Yunjiayun1,2, AN Junshe1,2,*(), ZHOU Li1,2   

  1. 1. Key Laboratory of Electronic Information Technology for Complex Aerospace Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
    2. School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2024-06-04 Revised:2024-07-13 Online:2025-12-15 Published:2024-09-20
  • Contact: AN Junshe

摘要:

传统的星载数据总线控制器局部网(CAN)和1553B总线难以满足日益复杂的空间探测任务需求。地面成熟的FlexRay总线以其高速率、确定性、高可靠、拓扑灵活、低成本等优势, 成为新型星载数据总线的研究热点。但FlexRay总线自主可控芯片欠缺且相关器件主要面向汽车领域, 限制了其在航天领域的部署应用。针对FlexRay总线协议复杂、星载任务可靠性要求高、受体积质量限制较大等技术难点, 提出一种自主可控的高可靠FlexRay协议IP核的设计。通过自启动设计, 解决FlexRay节点必须配备主机导致的成本、体积、质量增加问题; 提出一种特殊消息帧负载段格式和处理方式, 实现无主机节点的在轨维护; 设计一种消息过滤方法, 减少FlexRay节点不必要的消息处理开销; 分析三模冗余方法, 可有效减小单粒子翻转的影响; 设计多种错误处理方式, 有效防止异常节点干扰FlexRay网络。最后, 通过Modelsim仿真测试、硬件测试平台测试以及示波器测试, 对设计的FlexRay IP核进行功能、性能、可靠性测试, 结果表明, 该IP核与国外成熟的FlexRay芯片兼容, 支持多节点通信, 误码率小于10-12

关键词: FlexRay总线, 现场可编程门阵列, IP核, 星载, 自主可控, 数据总线

Abstract:

Traditional spacecraft data buses such as Controller Area Network (CAN) and 1553B struggle to meet the increasingly complex demands of modern spaceborne missions. FlexRay, a bus technology that has matured in ground-based applications, has emerged as a research hotspot for next-generation spacecraft data buses owing to its advantages in high speed, determinism, reliability, flexible topology, and low cost. However, the absence of autonomous and controllable FlexRay-compatible chips-and the fact that existing components are primarily designed for the automotive industry-has limited its deployment and application in China's aerospace sector. To address technical challenges such as the complexity of the FlexRay bus protocol, the high reliability requirements of spaceborne missions, and strict constraints on volume and mass, this paper proposes the design of an autonomous, highly reliable FlexRay protocol IP core. The self-starting architecture eliminates the need for an external host at each FlexRay node, thereby reducing system volume and mass. In addition, a specialized message frame format and processing method are designed to enable onboard maintenance of hostless nodes. A message filtering method is designed to reduce unnecessary message processing overhead in FlexRay nodes. The triple modular redundancy method, which effectively mitigates the impact of a single event upset, is also analyzed. Various error handling methods are developed to prevent abnormal nodes from interfering with the FlexRay network. Finally, the functionality, performance, and reliability of the designed FlexRay IP core are verified through Modelsim simulation, hardware testing, and oscilloscope analysis. Experimental results show that the IP core is compatible with a mature foreign FlexRay chip, supports multinode communication, and achieves a bit error rate of less than 10-12.

Key words: FlexRay bus, Field Programmable Gate Array (FPGA), IP core, satellite-borne, autonomous and controllable, data bus