| 1 |
|
| 2 |
宋景星, 朱岩, 饶家宁, 等. 星载高速串行数据处理系统设计与实现. 空间科学学报, 2023, 43 (1): 174- 182.
|
|
SONG J X , ZHU Y , RAO J N , et al. Design and implement of high-speed receiving cache system of the satellite. Chinese Journal of Space Science, 2023, 43 (1): 174- 182.
|
| 3 |
GILLI L, COSSU G, VINCENTI N, et al. Preliminary study on CAN-bus transmission over optical wireless for satellite applications[C]//Proceedings of IEEE International Conference on Space Optical Systems and Applications. Washington D. C., USA: IEEE Press, 2023: 31-35.
|
| 4 |
ZHU Z T, FU Y F, LU C T, et al. Research on data communication monitoring system of master and slave equipment in avionics system based on 1553B bus[C]//Proceedings of the 2nd International Conference on Networking Systems of AI. Washington D. C., USA: IEEE Press, 2022: 237-240.
|
| 5 |
陈世淼, 倪淑燕, 廖育荣. 微小卫星综合电子系统综述. 空间电子技术, 2020, 17 (5): 82- 87.
|
|
CHEN S M , NI S Y , LIAO Y R . Summary of integrated electronic systems of microsatellite. Space Electronic Technology, 2020, 17 (5): 82- 87.
|
| 6 |
HE D J , GAO Y , LIU X X , et al. Design of attack and defense framework for 1553B-based integrated electronic systems. IEEE Network, 2021, 35 (4): 234- 240.
doi: 10.1109/MNET.011.2000517
|
| 7 |
任智, 周舟, 吴本源, 等. 优化链路状态路由协议的低开销拓扑维护算法. 计算机工程, 2021, 47 (9): 120-127, 135.
doi: 10.19678/j.issn.1000-3428.0059016
|
|
REN Z , ZHOU Z , WU B Y , et al. Low-cost topology maintenance algorithm for optimized link state routing protocol. Computer Engineering, 2021, 47 (9): 120-127, 135.
doi: 10.19678/j.issn.1000-3428.0059016
|
| 8 |
WANG X, WANG C, YU B W, et al. Communication module of FC-AE-1553 interface[C]//Proceedings of the 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control. Washington D. C., USA: IEEE Press, 2015: 1369-1373.
|
| 9 |
PARKES S , ARMBRUSTER P . SpaceWire: Spacecraft onboard data-handling network. Acta Astronautica, 2010, 66 (1/2): 88- 95.
|
| 10 |
鞠铭阳, 张利洲, 王世奎. FC-AE-1553协议分析与研究. 现代电子技术, 2016, 39 (11): 21-23, 29.
|
|
JU M Y , ZHANG L Z , WANG S K . Analysis and research of FC-AE-1553 protocol. Modern Electronics Technique, 2016, 39 (11): 21-23, 29.
|
| 11 |
黄俊木, 王洋, 徐天慧, 等. FC-AE-1553数据总线的特点及在航天领域的应用. 宇航总体技术, 2021, 5 (4): 67- 72.
|
|
HUANG J M , WANG Y , XU T H , et al. The characteristics of FC-AE-1553 data bus and its application in aerospace field. Astronautical Systems Engineering Technology, 2021, 5 (4): 67- 72.
|
| 12 |
FANG L, ZHAO G H, CAO S Z. Design of heterogeneous FC-AE-1553 network[C]//Proceedings of IEEE International Conference on Control Science and Systems Engineering. Washington D. C., USA: IEEE Press, 2014: 130-134.
|
| 13 |
ROMANOWSKI K, TYCZKA P, HOLUBOWICZ W, et al. SpaceWire network management using network discovery and configuration protocol: SpaceWire networks and protocols, short paper[C]//Proceedings of International SpaceWire Conference. Washington D. C., USA: IEEE Press, 2016: 45-50.
|
| 14 |
HABINC S, JOHANSSON F, HERNANDEZ F, et al. Radiation-tolerant 18x SpaceWire router design and qualification for space application—GR718B: Components, long paper[C]//Proceedings of International SpaceWire Conference. Washington D. C., USA: IEEE Press, 2016: 267-272.
|
| 15 |
姚睿, 王梅群, 吴军, 等. 使用FPGA设计高可靠SpaceWire路由器. 国防科技大学学报, 2019, 41 (4): 86- 93.
|
|
YAO R , WANG M Q , WU J , et al. Design of highly reliable SpaceWire routers based on FPGA. Journal of National University of Defense Technology, 2019, 41 (4): 86- 93.
|
| 16 |
KHURRAM M, MUHAMMAD S, ZAIDI Y. CAN as a spacecraft communication bus in LEO satellite mission[C]//Proceedings of the 2nd International Conference on Recent Advances in Space Technologies. Washington D. C., USA: IEEE Press, 2005: 432-437.
|
| 17 |
王一华, 周晴, 胡婉如, 等. 面向CAN总线健壮性的形式化建模与验证. 电讯技术, 2023, 63 (9): 1419- 1426.
|
|
WANG Y H , ZHOU Q , HU W R , et al. Robustness verification technology of CAN bus based on formalization. Telecommunication Engineering, 2023, 63 (9): 1419- 1426.
|
| 18 |
SCHOLZ A , HSIAO T H , JUANG J N , et al. Open source implementation of ECSS CAN bus protocol for CubeSats. Advances in Space Research, 2018, 62 (12): 3438- 3448.
doi: 10.1016/j.asr.2017.10.015
|
| 19 |
FlexRay Consortium. FlexRay communications system protocol specification version 2.1 revision A[EB/OL]. [2024-04-29]. https://www.flexray.com.
|
| 20 |
GUNES-LASNET L S , FURANO G . Flexray: an answer to the challenges faced by spacecraft on-board communication protocols. Journal of Physics Condensed Matter, 2007, 15, 51- 62.
|
| 21 |
黎玉刚, 时昊天, 张鹏, 等. 基于FlexRay的武器系统星型网络架构设计. 弹箭与制导学报, 2023, 43 (2): 103- 108.
|
|
LI Y G , SHI H T , ZHANG P , et al. Design of star network architecture for weapon system based on FlexRay bus. Journal of Projectiles, Rockets, Missiles and Guidance, 2023, 43 (2): 103- 108.
|
| 22 |
刘绚, 杨佳. 基于FlexRay的航电总线的设计和实现. 信息技术与信息化, 2022 (5): 145- 148.
|
|
LIU X , YANG J . Design and implementation of avionics bus based on FlexRay. Information Technology & Informatization, 2022 (5): 145- 148.
|
| 23 |
袁春柱, 刘思远, 杨芳. 星载FlexRay总线应用层传输方法研究. 航天器工程, 2013, 22 (3): 67- 71.
|
|
YUAN C Z , LIU S Y , YANG F . Study of FlexRay bus application layer process for satellite. Spacecraft Engineering, 2013, 22 (3): 67- 71.
|
| 24 |
胡继英朔, 朱岩, 周莉. FlexRay总线的星载应用研究. 空间科学学报, 2024, 44 (6): 1166- 1176.
|
|
HU J Y S , ZHU Y , ZHOU L . Research on on-board application of FlexRay bus. Chinese Journal of Space Science, 2024, 44 (6): 1166- 1176.
|
| 25 |
LEE K, SIM J Y. High-speed transceiver network for in-vehicle communication system[C]//Proceedings of International SoC Design Conference. Washington D. C., USA: IEEE Press, 2020: 264-265.
|
| 26 |
KUMAR N , MONDAL A . Timing analysis of precedence constraint messages scheduled with slot multiplexing over dynamic segment of FlexRay. IEEE Transactions on Automation Science and Engineering, 2020, 17 (1): 222- 236.
doi: 10.1109/TASE.2019.2907959
|
| 27 |
DVORAK J , HANZALEK Z . Multi-variant scheduling of critical time-triggered communication in incremental development process: application to FlexRay. IEEE Transactions on Vehicular Technology, 2019, 68 (1): 155- 169.
doi: 10.1109/TVT.2018.2879920
|
| 28 |
MURVAY P S , GROZA B . Efficient physical layer key agreement for FlexRay networks. IEEE Transactions on Vehicular Technology, 2020, 69 (9): 9767- 9780.
doi: 10.1109/TVT.2020.3002616
|
| 29 |
PVLLEN D, ANAGNOSTOPOULOS N A, ARUL T, et al. Security and safety co-engineering of the FlexRay bus in vehicular networks[C]//Proceedings of International Conference on Omni-Layer Intelligent Systems. New York, USA: ACM Press, 2019: 31-37.
|
| 30 |
雷志军, 李文新, 雷志广, 等. 基于FPGA的Flexray IP核通信的研究与实现. 电子设计工程, 2016, 24 (3): 148-151, 155.
|
|
LEI Z J , LI W X , LEI Z G , et al. Research and implement of point to point communicate based on FPGA's Flex Ray IP. Electronic Design Engineering, 2016, 24 (3): 148-151, 155.
|
| 31 |
张斌. 基于FlexRay协议的通信总线控制器的设计[D]. 西安: 西安电子科技大学, 2022.
|
|
ZHANG B. Design of communication bus controller based on FlexRay protocol[D]. Xi'an: Xidian University, 2022. (in Chinese)
|
| 32 |
李韵. FlexRay总线控制器的设计与实现[D]. 武汉: 华中科技大学, 2022.
|
|
LI Y. Design and implementation of FlexRay bus controller[D]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese)
|
| 33 |
WIRTHLIN M J . FPGAs operating in a radiation environment: lessons learned from FPGAs in space. Journal of Instrumentation, 2013, 8 (2): 02020.
|
| 34 |
JUNG S , CHOI J P . Predicting system failure rates of SRAM-based FPGA on-board processors in space radiation environments. Reliability Engineering & System Safety, 2019, 183, 374- 386.
|
| 35 |
KASTENSMIDT F L, STERPONE L, CARRO L, et al. On the optimal design of triple modular redundancy logic for SRAM-based FPGAs[C]//Proceedings of Design, Automation and Test in Europe. Berlin, Germany: Springer, 1290-1295.
|
| 36 |
SHREEJITH S , FAHMY S A . Extensible FlexRay communication controller for FPGA-based automotive systems. IEEE Transactions on Vehicular Technology, 2015, 64 (2): 453- 465.
doi: 10.1109/TVT.2014.2324532
|
| 37 |
|