| 1 |
ØVESTAD I T , ENGESÆTER B , HALLE M K , et al. High-grade cervical intraepithelial neoplasia (CIN) associates with increased proliferation and attenuated immune signaling. International Journal of Molecular Sciences, 2022, 23 (1): 373.
|
| 2 |
BA W , WANG S , SHANG M , et al. Assessment of deep learning assistance for the pathological diagnosis of gastric cancer. Modern Pathology, 2022, 35 (9): 1262- 1268.
doi: 10.1038/s41379-022-01073-z
|
| 3 |
李建威, 吕晓琪, 谷宇. 基于改进ConvNeXt的皮肤镜图像分类方法. 计算机工程, 2023, 49 (10): 239-246, 254.
doi: 10.19678/j.issn.1000-3428.0066050
|
|
LI J W , LV X Q , GU Y . Dermoscopy image classification method based on improved ConvNeXt. Computer Engineering, 2023, 49 (10): 239-246, 254.
doi: 10.19678/j.issn.1000-3428.0066050
|
| 4 |
张雪芹, 李天任. 基于Cycle-GAN和改进DPN网络的乳腺癌病理图像分类. 浙江大学学报(工学版), 2022, 56 (4): 727- 735.
|
|
ZHANG X Q , LI T R . Classification of breast cancer pathological images based on Cycle-GAN and improved DPN network. Journal of Zhejiang University (Engineering Science), 2022, 56 (4): 727- 735.
|
| 5 |
XUE D , ZHOU X , LI C , et al. An application of transfer learning and ensemble learning techniques for cervical histopathology image classification. IEEE Access, 2020, 8, 104603- 104618.
doi: 10.1109/ACCESS.2020.2999816
|
| 6 |
WANG Y, BEUVING F, NONNEKES J, et al. Freezing of gait detection in Parkinson's disease via multimodal analysis of EEG and accelerometer signals[C]//Proceedings of 202042nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Washington D.C., USA: IEEE Press, 2020: 847-850.
|
| 7 |
LI Y , MAMOUEI M , SALIMI-KHORSHIDI G , et al. Hi-BEHRT: hierarchical transformer-based model for accurate prediction of clinical events using multimodal longitudinal electronic health records. IEEE Journal of Biomedical and Health Informatics, 2022, 27 (2): 1106- 1117.
|
| 8 |
LIU F, WU X, GE S, et al. Exploring and distilling posterior and prior knowledge for radiology report generation[C]//Proceedings of 2021 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 13748-13757.
|
| 9 |
张炯, 王丽芳, 蔺素珍, 等. 局部全局特征耦合与交叉尺度注意的医学图像融合. 计算机工程, 2023, 49 (3): 238- 247.
doi: 10.19678/j.issn.1000-3428.0064891
|
|
ZHANG J , WANG L F , LIN S Z , et al. Medical image fusion with local-global feature coupling and cross-scale attention. Computer Engineering, 2023, 49 (3): 238- 247.
doi: 10.19678/j.issn.1000-3428.0064891
|
| 10 |
HAN J , JIANG G , OUYANG G , et al. A multimodal approach for identifying autism spectrum disorders in children. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 2003- 2011.
|
| 11 |
SHI Z , ZHANG C , YE D , et al. MMI-Fuse: multimodal brain image fusion with multiattention module. IEEE Access, 2022, 10, 37200- 37214.
doi: 10.1109/ACCESS.2022.3163260
|
| 12 |
LIU T , HUANG J , LIAO T , et al. A hybrid deep learning model for predicting molecular subtypes of human breast cancer using multimodal data. IRBM, 2022, 43 (1): 62- 74.
|
| 13 |
WU Y, MA J, HUANG X, et al. DeepMMSA: a novel multimodal deep learning method for non-small cell lung cancer survival analysis[C]//Proceedings of 2021 IEEE International Conference on Systems, Man, and Cybernetics. Washington D.C., USA: IEEE Press, 2021: 1468-1472.
|
| 14 |
|
| 15 |
WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7794-7803.
|
| 16 |
LIU Z, LV Q, LI Y, et al. MedAugment: universal automatic data augmentation plug-in for medical image analysis[EB/OL]. [2024-02-12]. https://arxiv.org/abs/2306.17466.
|
| 17 |
HENDRYCKS D, MU N, CUBUK E D, et al. AugMix: a simple data processing method to improve robustness and uncertainty[EB/OL]. [2024-02-12]. https://arxiv.org/abs/1912.02781.
|
| 18 |
HUANG Z , ZHU X , DING M , et al. Medical image classification using a light-weighted hybrid neural network based on PCANet and DenseNet. IEEE Access, 2020, 8, 24697- 24712.
doi: 10.1109/ACCESS.2020.2971225
|
| 19 |
WOO S, DEBNATH S, HU R, et al. ConvNeXt v2: co-designing and scaling convnets with masked autoencoders[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 16133-16142.
|
| 20 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778.
|
| 21 |
MAAZ M, SHAKER A, CHOLAKKAL H, et al. EdgeNeXt: efficiently amalgamated CNN-transformer architecture for mobile vision applications[C]//Proceedings of European Conference on Computer Vision. Cham, Switzerland: Springer Nature, 2022: 3-20.
|
| 22 |
|
| 23 |
ZHANG Z, XIE Y, XING F, et al. MDNet: a semantically and visually interpretable medical image diagnosis network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 6428-6436.
|
| 24 |
ZHANG Z , CHEN P , SHI X , et al. Text-guided neural network training for image recognition in natural scenes and medicine. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (5): 1733- 1745.
|
| 25 |
VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: a neural image caption generator[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 3156-3164.
|
| 26 |
VAN DER MAATEN L , HINTON G . Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9, 2579- 2605.
|