作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (4): 37-46. doi: 10.19678/j.issn.1000-3428.0070221

• 上海市计算机学会40周年庆 • 上一篇    下一篇

基于多尺度聚合与高分辨率增强的CTA脑血管分割模型

张天旭1, 黄慧1,*(), 黄丙仓2, 马燕1, 徐傲2, 李晓艳2, 周孝雯2, 刘之之2   

  1. 1. 上海师范大学信息与机电工程学院, 上海 201412
    2. 上海市浦东新区公利医院影像科, 上海 200135
  • 收稿日期:2024-08-07 出版日期:2025-04-15 发布日期:2025-04-18
  • 通讯作者: 黄慧
  • 基金资助:
    国家自然科学基金(61501297)

CTA Cerebral Vessel Segmentation Model Based on Multi-scale Aggregation and High-resolution Enhancement

ZHANG Tianxu1, HUANG Hui1,*(), HUANG Bingcang2, MA Yan1, XU Ao2, LI Xiaoyan2, ZHOU Xiaowen2, LIU Zhizhi2   

  1. 1. College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201412, China
    2. Department of Radiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, China
  • Received:2024-08-07 Online:2025-04-15 Published:2025-04-18
  • Contact: HUANG Hui

摘要:

在颅脑CT血管造影(CTA)图像中, 脑血管形态各异、分布分散且不同患者之间差异较大。这导致利用U-Net进行血管分割时对血管局部形态的适应性不足, 容易忽略分散目标之间的相关性, 且在下采样过程中会丢失小尺度血管信息。针对以上问题, 在U-Net的基础上进行改进, 提出一种基于多尺度聚合和高分辨率增强的血管分割网络BVU-Net。在编码器的瓶颈层设计一种结合空洞变形金字塔(DDP)路径与全局注意力(GA)路径的多尺度特征聚合(MSFA)模块, 旨在同时捕获血管的不同尺度的局部形态特征和全局空间相关性特征。在跳跃连接路径中设计高分辨率特征增强(HRFE)模块, 使模型能充分利用语义信息更丰富的高级特征, 提高浅层高分辨率特征的表征能力, 补充小血管信息, 进一步提升血管分割精度。BVU-Net模型在公开数据集3D-IRCADb和私有数据集GLCTA上进行实验验证, Dice指标分别达到0.787 2和0.924 8, 平均交并比(MIoU)指标分别达到0.832 2和0.932 1。上述结果表明, BVU-Net模型的表现优于其他基于U-Net的改进分割模型, 具有一定泛化能力, 为后续的临床治疗和预后分析提供了更有力的参考。

关键词: 脑血管分割, 急性缺血性卒中, 多尺度特征聚合, 高分辨率增强, 可变形卷积

Abstract:

Cerebral vessels in brain CT Angiography (CTA) images exhibit diverse morphologies and distributions with significant variations among patients. The standard U-Net often struggles to adapt to local vessel morphology, leading to the loss of small target information during down-sampling and neglecting the correlations among scattered objects. To address these challenges, this study enhances the U-Net architecture and introduces the BVU-Net, a cerebral vessel segmentation network that utilizes multi-scale aggregation and high-resolution enhancement. The BVU-Net designs a Multi-Scale Feature Aggregation (MSFA) module in its bottleneck layer, which captures local vessel features at various scales as well as global correlation features. This module integrates the Dilated Deformable Pyramid (DDP) path and the Global Attention (GA) path. In addition, a High-Resolution Feature Enhancement (HRFE) module is incorporated into the skip connection paths, allowing for the effective use of advanced features with richer semantic information. This enhancement improves the representation of high-resolution features and supplements the information on small vessels. The performance of the BVU-Net is evaluated on the public dataset 3D-IRCADb and the private dataset GLCTA, achieving Dice scores of 0.787 2 and 0.924 8 and Mean Intersection over Union (MIoU) scores of 0.832 2 and 0.932 1, respectively. These results demonstrate that the BVU-Net outperforms other improved U-Net segmentation models and exhibits notable generalization capabilities, providing valuable insights for future clinical treatment and prognosis analysis.

Key words: cerebral vessel segmentation, Acute Ischemic Stroke (AIS), Multi-Scale Feature Aggregation (MSFA), high-resolution enhancement, deformable convolution