1 |
王陇德, 彭斌, 张鸿祺, 等. 《中国脑卒中防治报告2020》概要. 中国脑血管病杂志, 2022, 19 (2): 136- 144.
doi: 10.3969/j.issn.1672-5921.2022.02.011
|
|
WANG L D , PENG B , ZHANG H Q , et al. Brief report on stroke prevention and treatment in China, 2020. Chinese Journal of Cerebrovascular Diseases, 2022, 19 (2): 136- 144.
doi: 10.3969/j.issn.1672-5921.2022.02.011
|
2 |
霍晓川, 高峰. 中国急性缺血性卒中血管内治疗现状初步调查. 中国卒中杂志, 2016, 11 (4): 283- 287.
doi: 10.3969/j.issn.1673-5765.2016.04.008
|
|
HUO X C , GAO F . Preliminary investigation of endovascular treatment status of acute ischemic stroke in China. Chinese Journal of Stroke, 2016, 11 (4): 283- 287.
doi: 10.3969/j.issn.1673-5765.2016.04.008
|
3 |
SOARES J V , LEANDRO J J , JÚNIOR R M C , et al. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on Medical Imaging, 2006, 25 (9): 1214- 1222.
doi: 10.1109/TMI.2006.879967
|
4 |
XU L , LUO S . A novel method for blood vessel detection from retinal images. Biomedical Engineering Online, 2010, 9, 14.
doi: 10.1186/1475-925X-9-14
|
5 |
LUPAŞCU C A , TEGOLO D , TRUCCO E . FABC: retinal vessel segmentation using AdaBoost. IEEE Transactions on Information Technology in Biomedicine, 2010, 14 (5): 1267- 1274.
doi: 10.1109/TITB.2010.2052282
|
6 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
7 |
ZHOU Z W , RAHMAN S M M , TAJBAKHSH N , et al. UNet++: a nested U-Net architecture for medical image segmentation. Berlin, Germany: Springer, 2018: 3- 11.
|
8 |
|
9 |
IBTEHAZ N , RAHMAN M S . MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 2020, 121, 74- 87.
doi: 10.1016/j.neunet.2019.08.025
|
10 |
GU R , WANG G , SONG T , et al. CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Transactions on Medical Imaging, 2021, 40 (2): 699- 711.
doi: 10.1109/TMI.2020.3035253
|
11 |
|
12 |
SINGADKAR G , MAHAJAN A , THAKUR M , et al. Deep deconvolutional residual network based automatic lung nodule segmentation. Journal of Digital Imaging, 2020, 33 (3): 678- 684.
doi: 10.1007/s10278-019-00301-4
|
13 |
NI J J , WU J H , WANG H Y , et al. Global channel attention networks for intracranial vessel segmentation. Computers in Biology and Medicine, 2020, 118, 103639.
doi: 10.1016/j.compbiomed.2020.103639
|
14 |
WANG J , SUN K , CHENG T , et al. Deep high-resolution representation learning for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (10): 3349- 3364.
doi: 10.1109/TPAMI.2020.2983686
|
15 |
杜妮妮, 单凯东, 王建超. HRformer: 基于多级回归Transformer网络的红外小目标检测. 红外技术, 2024, 46 (2): 199- 207.
|
|
DU N N , SHAN K D , WANG J C . HRformer: hierarchical regression Transformer for infrared small-target detection. Infrared Technology, 2024, 46 (2): 199- 207.
|
16 |
圣文顺, 余熊峰, 林佳燕, 等. 融合注意力与特征金字塔的小尺度目标检测算法. 计算机工程, 2024, 50 (1): 242- 250.
doi: 10.19678/j.issn.1000-3428.0066724
|
|
SHENG W S , YU X F , LIN J Y , et al. Small-scale object detection algorithm integrating attention and feature Pyramids. Computer Engineering, 2024, 50 (1): 242- 250.
doi: 10.19678/j.issn.1000-3428.0066724
|
17 |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 833-851.
|
18 |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2017: 764-773.
|
19 |
XIONG Y W, LI Z Q, CHEN Y T, et al. Efficient deformable ConvNets: rethinking dynamic and sparse operator for vision applications[EB/OL]. [2024-07-11]. https://arxiv.org/abs/2401.06197v1.
|
20 |
徐晓峰, 黄韫栀, 徐军. 基于各向异性注意力的双分支血管分割模型. 计算机工程, 2024, 50 (1): 348- 356.
doi: 10.19678/j.issn.1000-3428.0067078
|
|
XU X F , HUANG Y Z , XU J . Dual-branch vascular segmentation model based on anisotropic attention. Computer Engineering, 2024, 50 (1): 348- 356.
doi: 10.19678/j.issn.1000-3428.0067078
|
21 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. [2024-07-11]. https://arxiv.org/abs/2010.11929.
|
22 |
VASWANI A , SHAZEER N , PARMAR N , et al. Attention is all you need. Advances in Neural Information Processing Systems, 2017, 30, 5998- 6008.
|
23 |
|
24 |
LI J Y , GAO G , YANG L , et al. DPF-Net: a dual-path progressive fusion network for retinal vessel segmentation. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1- 17.
|
25 |
ZHANG M , YU F , ZHAO J , et al. BEFD: boundary enhancement and feature denoising for vessel segmentation. Berlin, Germany: Springer, 2020.
|
26 |
GAO Z , ZONG Q , WANG Y , et al. Laplacian salience-gated feature pyramid network for accurate liver vessel segmentation. IEEE Transactions on Medical Imaging, 2023, 42 (10): 3059- 3068.
doi: 10.1109/TMI.2023.3273528
|
27 |
IOFFE S, SZEGEDY C, IOFFE S, et al. Batch normalization[C]//Proceedings of the 32nd International Conference on Machine Learning. New York, USA: ACM Press, 2015: 448-456.
|
28 |
XU S B, ZHENG S C, XU W H, et al. HCF-Net: hierarchical context fusion network for infrared small object detection[EB/OL]. [2024-07-11]. https://arxiv.org/abs/2403.10778v1.
|
29 |
|
30 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 11534-11542.
|
31 |
|
32 |
CHEN L C , PAPANDREOU G , KOKKINOS I , et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184
|