1 |
CAO X C , ZHANG C Q , ZHOU C J , et al. Constrained multi-view video face clustering. IEEE Transactions on Image Processing, 2015, 24 (11): 4381- 4393.
doi: 10.1109/TIP.2015.2463223
|
2 |
YIN J , SUN S L . Incomplete multi-view clustering with reconstructed views. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (3): 2671- 2682.
|
3 |
NG A Y, JORDAN M I, WEISS Y. On spectral clustering: analysis and an algorithm[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2002: 849-856.
|
4 |
ELHAMIFAR E , VIDAL R . Sparse subspace clustering: algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (11): 2765- 2781.
doi: 10.1109/TPAMI.2013.57
|
5 |
LIU G C , LIN Z C , YAN S C , et al. Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (1): 171- 184.
doi: 10.1109/TPAMI.2012.88
|
6 |
LU C Y , FENG J S , LIN Z C , et al. Subspace clustering by block diagonal representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (2): 487- 501.
doi: 10.1109/TPAMI.2018.2794348
|
7 |
陶洋, 鲍灵浪, 胡昊. 结构约束的对称低秩表示子空间聚类算法. 计算机工程, 2021, 47 (4): 56-61, 67.
doi: 10.19678/j.issn.1000-3428.0057476
|
|
TAO Y , BAO L L , HU H . Structure-constrained symmetric low-rank representation algorithm for subspace clustering. Computer Engineering, 2021, 47 (4): 56-61, 67.
doi: 10.19678/j.issn.1000-3428.0057476
|
8 |
宋艳, 殷俊. 基于共享近邻的多视角谱聚类算法. 计算机应用, 2020, 40 (11): 3211- 3216.
|
|
SONG Y , YIN J . Multi-view spectral clustering algorithm based on shared nearest neighbor. Journal of Computer Applications, 2020, 40 (11): 3211- 3216.
|
9 |
CHAO G Q , SUN S L , BI J B . A survey on multi-view clustering. IEEE Transactions on Artificial Intelligence, 2021, 2 (2): 146- 168.
doi: 10.1109/TAI.2021.3065894
|
10 |
YIN J, SUN S L, WEI L, et al. Discriminatively fuzzy multi-view k-means clustering with local structure preserving[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2024: 16478-16485.
|
11 |
胡傲然, 陈晓红. 基于多样性与一致性的单步多视图聚类. 计算机工程, 2024, 50 (5): 51- 61.
doi: 10.19678/j.issn.1000-3428.0067660
|
|
HU A R , CHEN X H . One-step multi-view clustering based on diversity and consistency. Computer Engineering, 2024, 50 (5): 51- 61.
doi: 10.19678/j.issn.1000-3428.0067660
|
12 |
张茁涵, 曹容玮, 李晨, 等. 隐式低秩稀疏表示的多视角子空间聚类. 模式识别与人工智能, 2020, 33 (4): 344- 352.
|
|
ZHANG Z H , CAO R W , LI C , et al. Latent low-rank sparse multi-view subspace clustering. Pattern Recognition and Artificial Intelligence, 2020, 33 (4): 344- 352.
|
13 |
YANG D Z , XU Q , ZHANG W , et al. Split multiplicative multi-view subspace clustering. IEEE Transactions on Image Processing, 2019, 28 (10): 5147- 5160.
doi: 10.1109/TIP.2019.2913096
|
14 |
LUO S, ZHANG C, ZHANG W, et al. Consistent and specific multi-view subspace clustering[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2018: 3730-3737.
|
15 |
WANG X B, GUO X J, LEI Z, et al. Exclusivity-consistency regularized multi-view subspace clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 1-9.
|
16 |
CAO X C, ZHANG C Q, FU H Z, et al. Diversity-induced multi-view subspace clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2015: 586-594.
|
17 |
ZHANG C, FU H, LIU S, et al. Low-rank tensor constrained multi-view subspace clustering[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2015: 1582-1590.
|
18 |
YIN M , GAO J B , XIE S L , et al. Multiview subspace clustering via tensorial t-product representation. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (3): 851- 864.
doi: 10.1109/TNNLS.2018.2851444
|
19 |
WANG H Y , HAN G Q , LI J Y , et al. Learning task-driving affinity matrix for accurate multi-view clustering through tensor subspace learning. Information Sciences, 2021, 563, 290- 308.
doi: 10.1016/j.ins.2021.02.054
|
20 |
XIE Y , TAO D C , ZHANG W S , et al. On unifying multi-view self-representations for clustering by tensor multi-rank minimization. International Journal of Computer Vision, 2018, 126 (11): 1157- 1179.
doi: 10.1007/s11263-018-1086-2
|
21 |
REN X, LIN Z C. Linearized alternating direction method with adaptive penalty and warm starts for fast solving transform invariant low-rank textures[EB/OL]. [2024-07-11]. http://arxiv.org/abs/1205.5351.
|
22 |
HUANG J, NIE F, HUANG H. Spectral rotation versus k-means in spectral clustering[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2013: 431-437.
|
23 |
ZHANG Z M, ELY G, AERON S, et al. Novel methods for multilinear data completion and de-noising based on tensor-SVD[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2014: 3842-3849.
|
24 |
XIA R K, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2014: 2149-2155
|
25 |
WANG H , YANG Y , LIU B . GMC: graph-based multi-view clustering. IEEE Transactions on Knowledge and Data Engineering, 2020, 32 (6): 1116- 1129.
doi: 10.1109/TKDE.2019.2903810
|
26 |
ZOU X , TANG C , ZHENG X , et al. Inclusivity induced adaptive graph learning for multi-view clustering. Knowledge-Based Systems, 2023, 267, 110424.
doi: 10.1016/j.knosys.2023.110424
|
27 |
LAN W , YANG T C , CHEN Q F , et al. Multiview subspace clustering via low-rank symmetric affinity graph. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (8): 11382- 11395.
doi: 10.1109/TNNLS.2023.3260258
|
28 |
ZHU P F , YAO X J , WANG Y , et al. Multiview deep subspace clustering networks. IEEE Transactions on Cybernetics, 2024, 54 (7): 4280- 4293.
doi: 10.1109/TCYB.2024.3372309
|