[1] SONG R, PENG J J, SUN S Y, et al.Visualized experiments on residual oil classification and its influencing factors in waterflooding using micro-computed tomography[J].Journal of Energy Resources Technology, 2020, 142(8):13-21. [2] CHENG B Y, LI J J, JIANG S, et al.Pore-scale investigation of microscopic remaining oil variation characteristic in different flow rates using micro-CT[J].Energies, 2021, 14(11):3057-3064. [3] SU J W, CHAI G L, WANG L, et al.Pore-scale direct numerical simulation of particle transport in porous media[J].Chemical Engineering Science, 2019, 199:613-627. [4] SHIN J, KO J, JEONG S, et al.Monolithic digital patterning of polydimethylsiloxane with successive laser pyrolysis[J].Nature Materials, 2021, 20(1):100-107. [5] SU J W, CHAI G L, WANG L, et al.Direct numerical simulation of pore scale particle-water-oil transport in porous media[J].Journal of Petroleum Science and Engineering, 2019, 180:159-175. [6] SU J W, WANG L, GU Z L, et al.Advances in pore-scale simulation of oil reservoirs[J].Energies, 2018, 11(5):1132-1142. [7] YANG Y F, WANG K, ZHANG L, et al.Pore-scale simulation of shale oil flow based on pore network model[J].Fuel, 2019, 251:683-692. [8] 张磊, 王小龙, 刘畅.联合显著性与MRF的SAR建筑物分割算法[J].计算机工程, 2022, 48(4):284-291, 298. ZHANG L, WANG X L, LIU C.SAR building segmentation algorithm combining saliency and MRF[J].Computer Engineering, 2022, 48(4):284-291, 298.(in Chinese) [9] OTSU N.A threshold selection method from gray-level histograms[J].IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66. [10] VERSACI M, MORABITO F C.Image edge detection:a new approach based on fuzzy entropy and fuzzy divergence[J].International Journal of Fuzzy Systems, 2021, 23(4):918-936. [11] HUANG Z L, WANG X G, WANG J S, et al.Weakly-supervised semantic segmentation network with deep seeded region growing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7014-7023. [12] 雷涛, 张肖, 加小红, 等.基于模糊聚类的图像分割研究进展[J].电子学报, 2019, 47(8):1776-1791. LEI T, ZHANG X, JIA X H, et al.Research progress on image segmentation based on fuzzy clustering[J].Acta Electronica Sinica, 2019, 47(8):1776-1791.(in Chinese) [13] BEZDEK J C, EHRLICH R, FULL W.FCM:the fuzzy c-means clustering algorithm[J].Computers & Geosciences, 1984, 10(2/3):191-203. [14] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA.IEEE Press, 2015:3431-3440. [15] RONNEBERGER O, FISCHER P, BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2015:234-241. [16] LI X M, CHEN H, QI X J, et al.H-DenseUNet:hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J].IEEE Transactions on Medical Imaging, 2018, 37(12):2663-2674. [17] XIAO X, LIAN S, LUO Z M, et al.Weighted res-UNet for high-quality retina vessel segmentation[C]//Proceedings of the 9th International Conference on Information Technology in Medicine and Education.Washington D.C., USA:IEEE Press, 2018:327-331. [18] GU Z W, CHENG J, FU H Z, et al.CE-net:context encoder network for 2D medical image segmentation[J].IEEE Transactions on Medical Imaging, 2019, 38(10):2281-2292. [19] LI D, HU J, WANG C H, et al.Involution:inverting the inherence of convolution for visual recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:12316-12325. [20] LEI T, WANG R S, ZHANG Y X, et al.DefED-net:deformable encoder-decoder network for liver and liver tumor segmentation[J].IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6(1):68-78. [21] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al.UNet:redesigning skip connections to exploit multiscale features in image segmentation[J].IEEE Transactions on Medical Imaging, 2020, 39(6):1856-1867. [22] OKTAY O, SCHLEMPER J, FOLGOC L L, et al.Attention U-net:learning where to look for the pancreas[EB/OL].[2022-05-20].https://arxiv.org/abs/1804.03999. [23] TREBING K, STAǸCZYK T, MEHRKANOON S.SmaAt-UNet:Precipitation nowcasting using a small attention-UNet architecture[J].Pattern Recognition Letters, 2021, 145:178-186. [24] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [25] SEO H, HUANG C, BASSENNE M, et al.Modified U-net (mU-net) with incorporation of object-dependent high level features for improved liver and liver-tumor segmentation in CT images[J].IEEE Transactions on Medical Imaging, 2020, 39(5):1316-1325. [26] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[EB/OL].[2022-05-20].https://arxiv.org/abs/1706.03762. [27] PARK J, WOO S, LEE J Y, et al.BAM:bottleneck attention module[EB/OL].[2022-05-20].https://arxiv.org/abs/1807.06514. [28] HU J, SHEN L, SUN G.Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7132-7141. [29] 刘洋, 金忠.一种结合非局部和多区域注意力机制的细粒度图像识别方法[J].计算机科学, 2021, 48(1):197-203. LIU Y, JIN Z.Fine-grained image recognition method combining with non-local and multi-region attention mechanism[J].Computer Science, 2021, 48(1):197-203.(in Chinese) [30] ZHANG Z L, SABUNCU M R.Generalized cross entropy loss for training deep neural networks with noisy labels[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.Barcelona, Spain:Curran Associates Incorporated, 2018:8792-8802. [31] HUANG Z L, WANG X G, WEI Y C, et al.CCNet:criss-cross attention for semantic segmentation[C]//Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence.Washington D.C., USA:IEEE Press, 2019:603-612. |