[1] CAO Lu,CHEN Ming,QIN Yufang.Pedestrian detection algorithm based on multi-channel and sparse convolution neural network[J].Transducer and Microsystem Technologies,2018,37(10):130-132,136.(in Chinese) 曹璐,陈明,秦玉芳.基于多通道稀疏卷积神经网络的行人检测算法[J].传感器与微系统,2018,37(10):130-132,136. [2] Pucuo Cairen,HONG Jianchao.Research on remote sensing image detection based on deep convolution neural network and significant image[J].Automation and Instrumentation,2018(12):50-53,57.(in Chinese) 普措才仁,洪建超.基于深度卷积神经检测网络与显著性图像的遥感图像检测研究[J].自动化与仪器仪表,2018(12):50-53,57. [3] TANG Siqi,TAO Wei,ZHANG Liangliang,et al.Research and implementation of crowd counting based on convolutional neural network[J].Journal of Zhengzhou University (Natural of Science Edition),2018,50(2):1-6.(in Chinese) 唐斯琪,陶蔚,张梁梁,等.一种多列特征图融合的深度人群计数算法[J].郑州大学学报(理学版),2018,50(2):1-6. [4] ZHANG Cong,LI Hongsheng,WANG Xiaogang,et al.Cross-scene crowd counting via deep convolutional neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2015:833-841. [5] SHANG Chong,AI Haizhou,BAI Bo.End-to-end crowd counting via joint learning local and global count[C]//Proceedings of IEEE Conference on Image Processing.Washington D.C.,USA:IEEE Press,2016:1215-1219. [6] SAM D B,SURYA S,BABU R V.Switching convolutional neural network for crowd counting[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-tion.Washington D.C.,USA:IEEE Press,2017:1-5. [7] ZHANG Y,ZHOU D,CHEN S,et al.Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:589-597. [8] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-01-15]. https://www.cnblogs.com/yinheyi/p/62339 50.html [9] DAI Jifeng,QI Haozhi,XIONG Yuwen,et al.Deformable convolutional networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:3. [10] CAO Xinkun,WANG Zhipeng,ZHAO Yanyun,et al.Scale aggrega-tion network for accurate and efficient crowd counting[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2018:757-773. [11] SINDAGI V A,PATEL V M.Generating high-quality crowd density maps using contextual pyramid CNNs[C]//Proceed-ings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:1861-1870. [12] SHEN Z,XU Y,NI B,et al.Crowd counting via adversarial cross-scale consistency pursuit[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:5245-5254. [13] LI Yuhong,ZHANG Xiaofan,CHEN Deming.CSRNet:dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:1-6. [14] BABU S D,SAJJAN N N,VENKATESH B R,et al.Divide and grow:capturing huge diversity in crowd images with incrementally growing CNN[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:3618-3626. [15] IDREES H,SALEEMI I,SEIBERT C,et al.Multi-source multi-scale counting in extremely dense crowd images[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2013:2547-2554. [16] SAM D B,BABU R V.Top-down feedback for crowd counting convolutional neural network[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.Palo Alto,USA:AAAI Press,2018:1-8. [17] RANJAN V,LE H,HOAI M.Iterative crowd counting[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2018:278-293. |