1 |
张亮, 刘百祥, 张如意, 等. 区块链技术综述. 计算机工程, 2019, 45 (5): 1- 12.
doi: 10.19678/j.issn.1000-3428.0053554
|
|
ZHANG L , LIU B X , ZHANG R Y , et al. Overview of blockchain technology. Computer Engineering, 2019, 45 (5): 1- 12.
doi: 10.19678/j.issn.1000-3428.0053554
|
2 |
|
3 |
LÓPEZ V A , SANDOVAL O A L , GARCÍA V L J . A security framework for Ethereum smart contracts. Computer Communications, 2021, 172, 119- 129.
doi: 10.1016/j.comcom.2021.03.008
|
4 |
PRAITHEESHAN P, PAN L, YU J S, et al. Security analysis methods on Ethereum smart contract vulnerabilities: a survey[EB/OL]. [2023-10-12]. https://arxiv.org/abs/1908.08605v3.
|
5 |
TANG X , DU Y , LAI A , et al. Deep learning-based solution for smart contract vulnerabilities detection. Scientific Reports, 2023, 13 (1): 20106.
doi: 10.1038/s41598-023-47219-0
|
6 |
WANG W , SONG J J , XU G Q , et al. ContractWard: automated vulnerability detection models for Ethereum smart contracts. IEEE Transactions on Network Science and Engineering, 2020, 8 (2): 1133- 1144.
|
7 |
YANG B X. Research on dynamic detection of vulnerabilities in smart contracts based on machine learning[C]//Proceedings of the IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). Washington D. C., USA: IEEE Press, 2024: 219-223.
|
8 |
TANN W J, HAN X J, GUPTA S S, et al. Towards safer smart contracts: a sequence learning approach to detecting security threats[EB/OL]. [2023-10-12]. https://arxiv.org/abs/1811.06632v3.
|
9 |
QIAN P , LIU Z G , HE Q M , et al. Towards automated reentrancy detection for smart contracts based on sequential models. IEEE Access, 2020, 8, 19685- 19695.
doi: 10.1109/ACCESS.2020.2969429
|
10 |
ZHUANG Y, LIU Z G, QIAN P, et al. Smart contract vulnerability detection using graph neural network[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Yokohama, Japan: [s. n. ], 2021: 3283-3290.
|
11 |
黄晓伟, 范贵生, 虞慧群, 等. 基于重子节点抽象语法树的软件缺陷预测. 计算机工程, 2021, 47 (12): 230-235, 248.
doi: 10.19678/j.issn.1000-3428.0060389
|
|
HUANG X W , FAN G S , YU H Q , et al. Software defect prediction via heavy son node-based abstract syntax tree. Computer Engineering, 2021, 47 (12): 230-235, 248.
doi: 10.19678/j.issn.1000-3428.0060389
|
12 |
YANG H W, ZHANG J M, GU X G, et al. Smart contract vulnerability detection based on abstract syntax tree[C]//Proceedings of the 8th International Symposium on System Security, Safety, and Reliability (ISSSR). Washington D. C., USA: IEEE Press, 2022: 169-170.
|
13 |
MITTAL A, WIDJAJA G, COSME P R D, et al. Blockchain based abstract syntax tree to detect vulnerability in IoT-enabled smart contract[C]//Proceedings of the 2nd International Conference on Smart Technologies for Smart Nation (SmartTechCon). Washington D. C., USA: IEEE Press, 2023: 270-275.
|
14 |
WHITE M, TUFANO M, VENDOME C, et al. Deep learning code fragments for code clone detection[C]//Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. New York, USA: ACM Press, 2016: 87-98.
|
15 |
SHAKYA S, MUKHERJEE A, HALDER R, et al. SmartMixModel: machine learning-based vulnerability detection of Solidity smart contracts[C]//Proceedings of the IEEE International Conference on Blockchain. Washington D. C., USA: IEEE Press, 2022: 37-44.
|
16 |
ZHANG J, WANG X, ZHANG H Y, et al. A novel neural source code representation based on abstract syntax tree[C]//Proceedings of the IEEE/ACM 41st International Conference on Software Engineering (ICSE). Washington D. C., USA: IEEE Press, 2019: 783-794.
|
17 |
|
18 |
MA J, GAO W, WONG K F. Rumor detection on twitter with tree-structured recursive neural networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, USA: ACL, 2018: 1-10.
|
19 |
DURIEUX T, FERREIRA J F, ABREU R, et al. Empirical review of automated analysis tools on 47, 587 Ethereum smart contracts[C]//Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. New York, USA: ACM Press, 2020: 530-541.
|
20 |
YUAN Y, XIE T Y. SVChecker: a deep learning-based system for smart contract vulnerability detection[C]//Proceedings of International Conference on Computer Application and Information Security (ICCAIS 2021). Wuhan, China: SPIE, 2022: 226-231.
|
21 |
HWANG S J , CHOI S H , SHIN J , et al. CodeNet: code-targeted convolutional neural network architecture for smart contract vulnerability detection. IEEE Access, 2022, 10, 32595- 32607.
doi: 10.1109/ACCESS.2022.3162065
|
22 |
WU H J, ZHANG Z, WANG S W, et al. Peculiar: smart contract vulnerability detection based on crucial data flow graph and pre-training techniques[C]//Proceedings of the IEEE 32nd International Symposium on Software Reliability Engineering (ISSRE). Washington D. C., USA: IEEE Press, 2021: 378-389.
|
23 |
LIU Z G, QIAN P, WANG X Y, et al. Combining graph neural networks with expert knowledge for smart contract vulnerability detection[EB/OL]. [2023-10-12]. https://arxiv.org/pdf/2107.11598.
|
24 |
FEIST J, GRIECO G, GROCE A. Slither: a static analysis framework for smart contracts[C]//Proceedings of the IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). Washington D. C., USA: IEEE Press, 2019: 8-15.
|
25 |
TIKHOMIROV S, VOSKRESENSKAYA E, IVANITSKIY I, et al. SmartCheck: static analysis of ethereum smart contracts[C]//Proceedings of the 1st International Workshop on Emerging Trends in Software Engineering for Blockchain. New York, USA: ACM Press, 2018: 9-16.
|
26 |
|