| 1 |
ZHENG Z B, XIE S A, DAI H N, et al. An overview of blockchain technology: architecture, consensus, and future trends[C]//Proceedings of the IEEE International Congress on Big Data (BigData Congress). Washington D.C., USA: IEEE Press, 2017: 557-564.
|
| 2 |
祝烈煌, 高峰, 沈蒙, 等. 区块链隐私保护研究综述. 计算机研究与发展, 2017, 54(10): 2170- 2186.
|
|
ZHU L H, GAO F, SHEN M, et al. Survey on privacy preserving techniques for blockchain technology. Journal of Computer Research and Development, 2017, 54(10): 2170- 2186.
|
| 3 |
GUO H Q, YU X J. A survey on blockchain technology and its security. Blockchain: Research and Applications, 2022, 3(2): 100067.
doi: 10.1016/j.bcra.2022.100067
|
| 4 |
CHEN C, ZHANG L, LI Y H, et al. When digital economy meets Web3.0: applications and challenges. IEEE Open Journal of the Computer Society, 2022, 3, 233- 245.
doi: 10.1109/OJCS.2022.3217565
|
| 5 |
ZHANG H, WU J J, WU Z Y, et al. Malo in the code jungle: explainable fault localization for decentralized applications. IEEE Transactions on Software Engineering, 2025, 51(7): 2197- 2210.
doi: 10.1109/TSE.2025.3578816
|
| 6 |
YANG S, LIN X W, CHEN J C, et al. Hyperion: unveiling DApp inconsistencies using LLM and dataflow-guided symbolic execution[C]//Proceedings of the 47th IEEE/ACM International Conference on Software Engineering (ICSE). Washington D.C., USA: IEEE Press, 2025: 2125-2137.
|
| 7 |
CHEN J C, SHAO Z Z, YANG S, et al. NumScout: unveiling numerical defects in smart contracts using LLM-pruning symbolic execution. IEEE Transactions on Software Engineering, 2025, 51(5): 1538- 1553.
doi: 10.1109/TSE.2025.3555622
|
| 8 |
WU Z Y, WU J J, ZHANG H, et al. Hunting in the dark forest: a pre-trained model for on-chain attack transaction detection in Web3[C]//Proceedings of the ACM Web Conference 2025. New York, USA: ACM Press, 2025: 4519-4530.
|
| 9 |
WU J J, LIN K X, LIN D, et al. Safeguarding blockchain ecosystem: understanding and detecting attack transactions on cross-chain bridges[C]//Proceedings of the ACM Web Conference 2025. New York, USA: ACM Press, 2025: 4902-4912.
|
| 10 |
WU J J, LIN D, FU Q S, et al. Toward understanding asset flows in crypto money laundering through the lenses of ethereum heists. IEEE Transactions on Information Forensics and Security, 2024, 19, 1994- 2009.
doi: 10.1109/TIFS.2023.3346276
|
| 11 |
LIN D, WU J J, YU Y M, et al. DenseFlow: spotting cryptocurrency money laundering in Ethereum transaction graphs[C]//Proceedings of the ACM Web Conference 2024. New York, USA: ACM Press, 2024: 4429-4438.
|
| 12 |
ALKHALIFAH A, NG A, WATTERS P A, et al. A mechanism to detect and prevent Ethereum blockchain smart contract reentrancy attacks. Frontiers in Computer Science, 2021, 3, 598780.
doi: 10.3389/fcomp.2021.598780
|
| 13 |
ZHANG J S, GAO J B, LI Y, et al. Xscope: hunting for cross-chain bridge attacks[C]//Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. New York, USA: ACM Press, 2023: 1-4.
|
| 14 |
LI Z W, JIANG Z G, FANG M, et al. SolPhishHunter: towards detecting and understanding phishing on Solana[EB/OL]. [2025-05-05]. https://arxiv.org/abs/2505.04094.
|
| 15 |
ZHUANG Y, LIU Z G, QIAN P, et al. Smart contract vulnerability detection using graph neural networks[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2021: 3283-3290.
|
| 16 |
GUO C P, ZHANG S J, ZHANG P Y, et al. LB-GLAT: long-term bi-graph layer attention convolutional network for anti-money laundering in transactional blockchain. Mathematics, 2023, 11(18): 3927.
doi: 10.3390/math11183927
|
| 17 |
LIN D, LU S F, LIU Z Y, et al. BridgeShield: enhancing security for cross-chain bridge applications via heterogeneous graph mining[EB/OL]. [2025-05-05]. https://arxiv.org/abs/2508.20517.
|
| 18 |
CHEN Y Z, SUN Z Y, GONG Z H, et al. Improving smart contract security with contrastive learning-based vulnerability detection[C]//Proceedings of the 46th IEEE/ACM International Conference on Software Engineering. New York, USA: ACM Press, 2024: 1-11.
|
| 19 |
NAVEED H, KHAN A U, QIU S, et al. A comprehensive overview of large language models. ACM Transactions on Intelligent Systems and Technology, 2025, 16(5): 1- 72.
|
| 20 |
董伟良, 刘哲, 刘逵, 等. 智能合约漏洞检测技术综述. 软件学报, 2024, 35(1): 38- 62.
|
|
DONG W L, LIU Z, LIU K, et al. Survey on vulnerability detection technology of smart contracts. Journal of Software, 2024, 35(1): 38- 62.
|
| 21 |
崔展齐, 杨慧文, 陈翔, 等. 智能合约安全漏洞检测研究进展. 软件学报, 2024, 35(5): 2235- 2267.
|
|
CUI Z Q, YANG H W, CHEN X, et al. Research progress of security vulnerability detection of smart contracts. Journal of Software, 2024, 35(5): 2235- 2267.
|
| 22 |
QI Y X, WU J, XU H S, et al. Blockchain data mining with graph learning: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(2): 729- 748.
doi: 10.1109/TPAMI.2023.3327404
|
| 23 |
WU J J, LIN D, ZHENG Z B. Blockchain transaction data analytics: complex network approaches. Singapore: Springer Nature Singapore, 2025.
|
| 24 |
王佳鑫, 颜嘉麒, 毛谦昂. 加密数字货币监管技术研究综述. 计算机应用, 2023, 43(10): 2983- 2995.
|
|
WANG J X, YAN J Q, MAO Q A. Overview of cryptocurrency regulatory technologies research. Journal of Computer Applications, 2023, 43(10): 2983- 2995.
|
| 25 |
李广, 陈梓钿, 卞静, 等. 区块链欺诈行为识别技术综述. 信息安全学报, 2024, 9(4): 1- 30.
|
|
LI G, CHEN Z T, BIAN J, et al. Blockchain fraud behaviors detection technology: a survey. Journal of Cyber Security, 2024, 9(4): 1- 30.
|
| 26 |
高昊昱, 曹春杰, 白伊瑞, 等. 区块链安全监管研究综述. 通信学报, 2025, 46(4): 49- 70.
|
|
GAO H Y, CAO C J, BAI Y R, et al. Review of research on blockchain safety supervision. Journal on Communications, 2025, 46(4): 49- 70.
|
| 27 |
刘乐源, 李湘叶, 蓝天, 等. 区块链系统中反洗钱技术研究综述. 中国工程科学, 2025, 27(2): 287- 303.
|
|
LIU L Y, LI X Y, LAN T, et al. A survey on anti-money laundering techniques in blockchain systems. Strategic Study of CAE, 2025, 27(2): 287- 303.
|
| 28 |
|
| 29 |
LIU Z. Service computing and artificial intelligence: technological integration and application prospects. Academic Journal of Computing & Information Science, 2024, 7(5): 174- 179.
|
| 30 |
FENG K, LUO L J, XIA Y J, et al. Optimizing microservice deployment in edge computing with large language models: integrating retrieval augmented generation and chain of thought techniques. Symmetry, 2024, 16(11): 1470.
doi: 10.3390/sym16111470
|
| 31 |
YANG J, WU Q, FENG Z Y, et al. Quality-of-service aware LLM routing for edge computing with multiple experts. IEEE Transactions on Mobile Computing, 2025, 24(12): 13648- 13662.
doi: 10.1109/TMC.2025.3590969
|
| 32 |
TIAN Y Q, ZHANG Z Y, YANG Y Z, et al. An edge-cloud collaboration framework for generative AI service provision with synergetic big cloud model and small edge models. IEEE Network, 2024, 38(5): 37- 46.
doi: 10.1109/MNET.2024.3420755
|
| 33 |
|
| 34 |
FEIST J, GRIECO G, GROCE A. Slither: a static analysis framework for smart contracts[C]//Proceedings of the 2nd IEEE/ACM International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). Washington D.C., USA: IEEE Press, 2019: 8-15.
|
| 35 |
ZHOU J F, JIANG T X, WANG H J, et al. DAppHunter: identifying inconsistent behaviors of blockchain-based decentralized applications[C]//Proceedings of the 45th IEEE/ACM International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). Washington D.C., USA: IEEE Press, 2023: 24-35.
|
| 36 |
WU S W, YU Z, WANG D B, et al. DeFiRanger: detecting DeFi price manipulation attacks. IEEE Transactions on Dependable and Secure Computing, 2024, 21(4): 4147- 4161.
doi: 10.1109/TDSC.2023.3346888
|
| 37 |
LIAO Z Q, ZHENG Z B, CHEN X, et al. SmartDagger: a bytecode-based static analysis approach for detecting cross-contract vulnerability[C]//Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis. New York, USA: ACM Press, 2022: 752-764.
|
| 38 |
MEIKLEJOHN S, POMAROLE M, JORDAN G, et al. A fistful of Bitcoins: characterizing payments among men with no names. Communications of the ACM, 2016, 59(4): 86- 93.
doi: 10.1145/2896384
|
| 39 |
|
| 40 |
|
| 41 |
|
| 42 |
SHAKYA S, MUKHERJEE A, HALDER R, et al. SmartMixModel: machine learning-based vulnerability detection of solidity smart contracts[C]//Proceedings of the IEEE International Conference on Blockchain (Blockchain). Washington D.C., USA: IEEE Press, 2022: 37-44.
|
| 43 |
ESHGHIE M, ARTHO C, GUROV D. Dynamic vulnerability detection on smart contracts using machine learning[C]//Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering. Washington D.C., USA: IEEE Press, 2021: 305-312.
|
| 44 |
WU J J, YUAN Q, LIN D, et al. Who are the phishers? phishing scam detection on Ethereum via network embedding. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(2): 1156- 1166.
doi: 10.1109/TSMC.2020.3016821
|
| 45 |
LI S J, GOU G P, LIU C, et al. TTAGN: temporal transaction aggregation graph network for Ethereum phishing scams detection[C]//Proceedings of the ACM Web Conference 2022. New York, USA: ACM Press, 2022: 661-669.
|
| 46 |
CHEN W L, ZHENG Z B, CUI J H, et al. Detecting ponzi schemes on Ethereum: towards healthier blockchain technology[C]//Proceedings of the 2018 World Wide Web Conference. New York, USA: ACM Press, 2018: 1409-1418.
|
| 47 |
WEBER M, DOMENICONI G, CHEN J, et al. Anti-money laundering in Bitcoin: experimenting with graph convolutional networks for financial forensics[EB/OL]. [2025-05-05]. https://arxiv.org/abs/1908.02591.
|
| 48 |
CHEN W L, WU J, ZHENG Z B, et al. Market manipulation of Bitcoin: evidence from mining the Mt. gox transaction network[C]// Proceedings of the IEEE Conference on Computer Communications. Washington D.C., USA: IEEE Press, 2019: 964-972.
|
| 49 |
LIN D, WU J J, YUAN Q, et al. T-EDGE: temporal weighted multidigraph embedding for Ethereum transaction network analysis. Frontiers in Physics, 2020, 8, 204.
doi: 10.3389/fphy.2020.00204
|
| 50 |
YU W J, XIA Y J, LIU J L, et al. Streaming phishing scam detection method on Ethereum[C]//Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). Washington D.C., USA: IEEE Press, 2023: 1-5.
|
| 51 |
|
| 52 |
CHEN W M, LI X R, SUI Y T, et al. SADPonzi: detecting and characterizing ponzi schemes in Ethereum smart contracts. ACM SIGMETRICS Performance Evaluation Review, 2022, 49(1): 35- 36.
|
| 53 |
LIU J L, CHEN J Z, WU J J, et al. Fishing for fraudsters: uncovering Ethereum phishing gangs with blockchain data. IEEE Transactions on Information Forensics and Security, 2024, 19, 3038- 3050.
doi: 10.1109/TIFS.2024.3359000
|
| 54 |
LIU J Y, YIN C C, WANG H, et al. Graph embedding-based money laundering detection for Ethereum. Electronics, 2023, 12(14): 3180.
doi: 10.3390/electronics12143180
|
| 55 |
HU S H, HUANG T S, LHAN F, et al. Large language model-powered smart contract vulnerability detection: new perspectives[C]//Proceedings of the 5th IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). Washington D.C., USA: IEEE Press, 2024: 297-306.
|
| 56 |
YU L, HUANG Z R, YUAN H, et al. Smart-LLaMA-DPO: reinforced large language model for explainable smart contract vulnerability detection. Proceedings of the ACM on Software Engineering, 2025, 2
|
| 57 |
|
| 58 |
|
| 59 |
ERFAN F, YAHYATABAR M, BELLAICHE M, et al. Advanced smart contract vulnerability detection using large language models[C]//Proceedings of the 8th Cyber Security in Networking Conference (CSNet). Washington D.C., USA: IEEE Press, 2025: 289-296.
|
| 60 |
JIE W Q, QIU W J, YANG H F, et al. Agent4Vul: multimodal LLM agents for smart contract vulnerability detection. Science China Information Sciences, 2025, 68(6): 160101.
doi: 10.1007/s11432-024-4402-2
|
| 61 |
ZHAO B, LINX, TIAN Y, et al. Detecting functional bugs in smart contracts through LLM-powered and bug-oriented composite analysis[EB/OL]. [2025-05-05]. https://arxiv.org/html/2503.23718v1.
|
| 62 |
CHEN C, SU J Z, CHEN J C, et al. When ChatGPT meets smart contract vulnerability detection: how far are we?. ACM Transactions on Software Engineering and Methodology, 2025, 34(4): 1- 30.
|
| 63 |
|
| 64 |
WU C, CHEN J, WANG Z W, et al. Semantic sleuth: identifying ponzi contracts via large language models[C]//Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering. Washington D.C., USA: IEEE Press, 2024: 582-593.
|
| 65 |
BU J Y, LI W K, LI Z W, et al. Enhancing smart contract vulnerability detection in DApps leveraging fine-tuned LLM[EB/OL]. [2025-05-05]. https://arxiv.org/abs/2504.05006.
|
| 66 |
CHEN J C, CHEN C, HU J, et al. Identifying smart contract security issues in code snippets from stack overflow[C]//Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York, USA: ACM Press, 2024: 1198-1210.
|
| 67 |
STORHAUG A, LI J Y, HU T Y. Efficient avoidance of vulnerabilities in auto-completed smart contract code using vulnerability-constrained decoding[C]//Proceedings of the 34th IEEE International Symposium on Software Reliability Engineering (ISSRE). Washington D.C., USA: IEEE Press, 2023: 683-693.
|
| 68 |
WANG C, ZHANG J S, GAO J B, et al. ContractTinker: LLM-empowered vulnerability repair for real-world smart contracts[C]//Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engineering. Washington D.C., USA: IEEE Press, 2024: 2350-2353.
|
| 69 |
LIU Y, XUE Y, WU D Y, et al. PropertyGPT: LLM-driven formal verification of smart contracts through retrieval-augmented property generation[C]//Proceedings of 2025 Network and Distributed System Security Symposium. Washington D.C., USA: IEEE Press, 2025: 16-22.
|
| 70 |
CHEN Y Z, SUN Z Y, WANG G Q, et al. From cryptic to clear-training on LLM explanations to detect smart contract vulnerabilities. ACM Transactions on Software Engineering and Methodology, 2025, 5, 3765753.
|
| 71 |
LI Z W, LI X Q, LI W K, et al. SCALM: detecting bad practices in smart contracts through LLMs. Proceedings of the AAAI Conference on Artificial Intelligence, 2025, 39(1): 470- 477.
doi: 10.1609/aaai.v39i1.32026
|
| 72 |
MOTHUKURI V, PARIZI R M. Automated judging of LLM-based smart contract security auditors[C]//Proceedings of the IEEE International Conference on Blockchain and Cryptocurrency (ICBC). Washington D.C., USA: IEEE Press, 2025: 1-5.
|
| 73 |
HU S H, HUANG T S, CHOW K H, et al. ZipZap: efficient training of language models for large-scale fraud detection on blockchain[C]//Proceedings of the ACM Web Conference 2024. New York, USA: ACM Press, 2024: 2807-2816.
|
| 74 |
|
| 75 |
WANG S Z, HUANG Y, XU Z E, et al. TraceLLM: security diagnosis through traces and smart contracts in Ethereum[EB/OL]. [2025-05-05]. https://arxiv.org/abs/2509.03037.
|
| 76 |
|
| 77 |
LEI Y C, XIANG Y X, WANG Q, et al. Large language models for cryptocurrency transaction analysis: a Bitcoin case study[EB/OL]. [2025-05-05]. https://arxiv.org/abs/2501.18158.
|
| 78 |
BADJIE A, NTUALA G M, XIA Q, et al. MGGPT: a Multi-Graph GPT-enhanced framework for dynamic fraud detection in cryptocurrency networks. Computer Networks, 2025, 270, 111508.
doi: 10.1016/j.comnet.2025.111508
|
| 79 |
WATSON A, RICHARDS G, SCHIFF D. Explain first, trust later: LLM-augmented explanations for graph-based crypto anomaly detection[EB/OL]. [2025-05-05]. https://arxiv.org/abs/2506.14933.
|
| 80 |
NICHOLLS J, KUPPA A, LE KHAC N A. Enhancing illicit activity detection using XAI: a multimodal graph-LLM framework[EB/OL]. [2025-05-05]. https://arxiv.org/abs/2310.13787.
|
| 81 |
LI Z C. Knowledge-grounded detection of cryptocurrency scams with retrieval-augmented LMs[C]//Proceedings of the 3rd Workshop on Towards Knowledgeable Foundation Models (KnowFM). New York, USA: ACM Press, 2025: 40-48.
|
| 82 |
CHEN B, LI G L, LIN X, et al. BlockAgents: towards Byzantine-robust LLM-based multi-agent coordination via blockchain[C]//Proceedings of the ACM Turing Award Celebration Conference 2024. New York, USA: ACM Press, 2024: 187-192.
|
| 83 |
WU Y, QIN Y, SU X, et al. Transformer-based risk monitoring for anti-money laundering with transaction graph integration[C]//Proceedings of the 2025 2nd International Conference on Digital Economy, Blockchain and Artificial Intelligence. New York, USA: ACM Press, 2025: 388-393.
|
| 84 |
LIN D, ZHENG Z Y, WU J J, et al. Track and trace: automatically uncovering cross-chain transactions in the multi-blockchain ecosystems. IEEE Transactions on Services Computing, 2025, 18(6): 4291- 4303.
doi: 10.1109/TSC.2025.3618729
|
| 85 |
LIN D, DING Y L, ZOU W P, et al. RiskTagger: an LLM-based agent for automatic annotation of Web3 crypto money laundering behaviors[EB/OL]. [2025-05-05]. https://arxiv.org/abs/2510.17848.
|
| 86 |
WU G F, WANG H P, LAI X, et al. A comprehensive survey of smart contract security: state of the art and research directions. Journal of Network and Computer Applications, 2024, 226, 103882.
doi: 10.1016/j.jnca.2024.103882
|
| 87 |
MOUNNAN O, MANAD O, BOUBCHIR L, et al. A review on deep anomaly detection in blockchain. Blockchain: Research and Applications, 2024, 5(4): 100227.
doi: 10.1016/j.bcra.2024.100227
|
| 88 |
|
| 89 |
GEREN C, BOARD A, DAGHER G G, et al. Blockchain for large language model security and safety: a holistic survey. ACM SIGKDD Explorations Newsletter, 2025, 26(2): 1- 20.
doi: 10.1145/3715073.3715075
|
| 90 |
|
| 91 |
HE Z Y, LI Z H, YANG S, et al. Large language models for blockchain security: a systematic literature review[EB/OL]. [2025-05-05]. https://arxiv.org/abs/2403.14280.
|
| 92 |
KETENCI U G, KURT T, ÖNAL S, et al. A time-frequency based suspicious activity detection for anti-money laundering. IEEE Access, 2021, 9, 59957- 59967.
doi: 10.1109/ACCESS.2021.3072114
|
| 93 |
CHEN Z Y, VAN KHOA L D, TEOH E N, et al. Machine learning techniques for Anti-Money Laundering (AML) solutions in suspicious transaction detection: a review. Knowledge and Information Systems, 2018, 57(2): 245- 285.
doi: 10.1007/s10115-017-1144-z
|
| 94 |
ALKHALILI M, QUTQUT M H, ALMASALHA F. Investigation of applying machine learning for watch-list filtering in anti-money laundering. IEEE Access, 2021, 9, 18481- 18496.
doi: 10.1109/ACCESS.2021.3052313
|
| 95 |
JULLUM M, LØLAND A, HUSEBY R B, et al. Detecting money laundering transactions with machine learning. Journal of Money Laundering Control, 2020, 23(1): 173- 186.
doi: 10.1108/JMLC-07-2019-0055
|
| 96 |
|
| 97 |
|
| 98 |
DRE EWSKI R, SEPIELAK J, FILIPKOWSKI W. The application of social network analysis algorithms in a system supporting money laundering detection. Information Sciences, 2015, 295, 18- 32.
doi: 10.1016/j.ins.2014.10.015
|
| 99 |
YU Q, XU Z, KE Z. Deep learning for cross-border transaction anomaly detection in anti-money laundering systems[C]//Proceedings of the 6th International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). Washington D.C., USA: IEEE Press, 2025: 244-248.
|
| 100 |
|
| 101 |
HAN J G, BARMAN U, HAYES J, et al. NextGen AML: distributed deep learning based language technologies to augment anti money laundering investigation[EB/OL]. [2025-05-05]. https://aclanthology.org/P18-4007/.
|
| 102 |
KUTE D V, XU Z H, LI Y K, et al. Truman: a large language model-based multi-agent simulator for synthetic money laundering data generation[C]//Proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems. New York, USA: ACM Press, 2025: 2594-2596.
|
| 103 |
|
| 104 |
PIRMORAD E. Exploring the in-context learning capabilities of LLMs for money laundering detection in financial graphs[EB/OL]. [2025-05-05]. https://arxiv.org/abs/2507.14785.
|
| 105 |
YAN Y Q, HU T C, ZHU W B. Leveraging large language models for enhancing financial compliance: a focus on anti-money laundering applications[C]//Proceedings of the 4th International Conference on Robotics, Automation and Artificial Intelligence (RAAI). Washington D.C., USA: IEEE Press, 2025: 260-273.
|
| 106 |
|
| 107 |
NAIK P V, DINTAKURTHI N K, HU Z H, et al. Co-investigator AI: the rise of agentic AI for smarter, trustworthy AML compliance narratives[EB/OL]. [2025-05-05]. https://arxiv.org/abs/2509.08380.
|
| 108 |
KAN L, WEI Y, HAFIZ MUHAMMAD A, et al. A multiple blockchains architecture on inter-blockchain communication[C]//Proceedings of the IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). Washington D.C., USA: IEEE Press, 2018: 139-145.
|
| 109 |
WU Z H, XIAO Y, ZHOU E Y, et al. A solution to data accessibility across heterogeneous blockchains[C]//Proceedings of the 26th IEEE International Conference on Parallel and Distributed Systems (ICPADS). Washington D.C., USA: IEEE Press, 2021: 414-421.
|
| 110 |
|
| 111 |
YIN S K, FU C Y, ZHAO S R, et al. A survey on multimodal large language models. National Science Review, 2024, 11(12): 403.
doi: 10.1093/nsr/nwae403
|
| 112 |
HADI M U, TASHI A, QURESHI R, et al. Large language models: a comprehensive survey of its applications, challenges, limitations, and future prospects[EB/OL]. [2025-05-05]. https://github.com/anas-zafar/LLM-Survey.
|
| 113 |
|
| 114 |
|
| 115 |
|
| 116 |
|