摘要: 提出了一种基于聚类分析方法构建入侵检测库的模型,实现了按K-平均值方法建立入侵检测库并据此划分安全等级的思想。该检测系统的建立不依赖于经验数据,能自动依据原有数据对入侵行为进行重新划分。仿真实验表明,该方法具有较强的实用性和自适应功能。
关键词:
网络安全,
入侵检测,
数据挖掘,
聚类分析,
K-平均值
Abstract: This paper introduces an intrusion detection model based on clustering analysis and realizes an algorithm of K-means which can set up a database of intrusion detection and classify safe levels. Experiential data are not required to set up this detection system, which is capable of re-classifying intrusion behaviors in terms of related data automatically. Simulation experiments show that the technique possesses strong applicability and self-adaptability.
Key words:
network security,
intrusion detection,
data mining,
clustering analysis,
K-means
中图分类号:
李 洋. K-means聚类算法在入侵检测中的应用[J]. 计算机工程, 2007, 33(14): 154-156.
LI Yang. Application of K-means Clustering Algorithm in Intrusion Detection[J]. Computer Engineering, 2007, 33(14): 154-156.