作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (01): 146-147. doi: 10.3969/j.issn.1000-3428.2012.01.045

• 人工智能及识别技术 • 上一篇    下一篇

基于主成分分析的人脸个体差异识别算法

龚 劬,卢 力,廖武忠   

  1. (重庆大学数学与统计学院,重庆 400030)
  • 收稿日期:2011-07-04 出版日期:2012-01-05 发布日期:2012-01-05
  • 作者简介:龚 劬(1963-),女,教授,主研方向:模式识别,图像分割;卢 力、廖武忠,硕士研究生

Recognition Algorithm of Face Individuality Difference Based on Principal Component Analysis

GONG Qu, LU Li, LIAO Wu-zhong   

  1. (College of Mathematics and Statistics, Chongqing University, Chongqing 400030, China)
  • Received:2011-07-04 Online:2012-01-05 Published:2012-01-05

摘要: 传统基于主成分分析(PCA)的人脸识别算法不能最优区分不同种类样本。为此,提出一种新的基于PCA的人脸识别算法。利用PCA降维方法提取人脸的个体差异特征,并采用最近邻距离分类器对该特征进行分类。在ORL人脸数据库上的实验结果表明,与传统算法相比,该算法的正确识别率较高。

关键词: 人脸识别, 特征提取, 个体差异, 主成分分析, 最近邻分类

Abstract: The Principal Component Analysis(PCA) is not the best method to extract features for recognition because the difference between different kinds is not considered. Aiming at this problem, a new face recognition algorithm based on PCA is proposed. It uses PCA reducing dimensions method to extract the individuality difference. A nearest neighbor classifier is employed to classify the extracted features. The method in the paper is evaluated on the ORL face image database, a series of experiments to compare the proposed approach with traditional PCA method. Experimental results demonstrate the efficacy of the algorithm.

Key words: face recognition, feature extraction, individuality difference, Principal Component Analysis(PCA), nearest neighbor classification

中图分类号: