作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (06): 207-209. doi: 10.3969/j.issn.1000-3428.2012.06.068

• 人工智能及识别技术 • 上一篇    下一篇

基于Gabor小波和稀疏表示的人脸表情识别

张 娟,詹永照,毛启容,邹 翔   

  1. (江苏大学计算机科学与通信工程学院,江苏 镇江 212013)
  • 收稿日期:2011-09-20 出版日期:2012-03-20 发布日期:2012-03-20
  • 作者简介:张 娟(1987-),女,硕士研究生,主研方向:图像处理,模式识别;詹永照,教授、博士生导师;毛启容,副教授、博士;邹 翔,本科生
  • 基金资助:

    国家自然科学基金资助项目(61003183);江苏省自然科 学基金资助项目(BK2009199)

Facial Expression Recognition Based on Gabor Wavelet and Sparse Representation

ZHANG Juan, ZHAN Yong-zhao, MAO Qi-rong, ZOU Xiang   

  1. (School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, China)
  • Received:2011-09-20 Online:2012-03-20 Published:2012-03-20

摘要: 通过分析Gabor小波和稀疏表示的生物学背景和数学特性,提出一种基于Gabor小波和稀疏表示的人脸表情识别方法。采用Gabor小波变换对表情图像进行特征提取,建立训练样本Gabor特征的超完备字典,通过稀疏表示模型优化人脸表情图像的特征向量,利用融合识别方法进行多分类器融合识别分类。实验结果表明,该方法能够有效提取表情图像的特征信息,提高表情识别率。

关键词: 人脸表情识别, 特征提取, 稀疏表示, Gabor小波, 融合识别, 模糊密度

Abstract: By analyzing the biology background and mathematical properties of Gabor wavelet and sparse representation, a new approach for facial expression recognition based on Gabor wavelet and sparse representation is presented in this paper. Gabor wavelet transformation is adopted to extract features for the static facial expression image. The over-complete dictionary is constructed by the Gabor features of all training samples and sparse feature vector of this facial expression image is obtained by using sparse representation model. It uses a fusion recognition method for implementing multiple classifiers fusion. Experimental results show that integrating Gabor wavelet transformation and sparse representation is more effective for extracting expression image information. The approach effectively raises the accuracy of expression recognition.

Key words: facial expression recognition, feature extraction, sparse representation, Gabor wavelet, fusion recognition, fuzzy density

中图分类号: