1 |
LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2002: 1150-1157.
|
2 |
OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971- 987.
doi: 10.1109/TPAMI.2002.1017623
|
3 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2005: 886-893.
|
4 |
SHI Y, LV Z, BI N, et al. An improved SIFT algorithm for robust emotion recognition under various face poses and illuminations. Neural Computing and Applications, 2020, 32(13): 9267- 9281.
doi: 10.1007/s00521-019-04437-w
|
5 |
MISTRY K, JASEKAR J, ISSAC B, et al. Extended LBP based facial expression recognition system for adaptive AI agent behaviour[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2018: 1-7.
|
6 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
7 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks. Communications of the ACM, 2020, 63(11): 139- 144.
doi: 10.1145/3422622
|
8 |
姚乃明, 郭清沛, 乔逢春, 等. 基于生成式对抗网络的鲁棒人脸表情识别. 自动化学报, 2018, 44(5): 865- 877.
doi: 10.16383/j.aas.2018.c170477
|
|
YAO N M, GUO Q P, QIAO F C, et al. Robust facial expression recognition with generative adversarial networks. Acta Automatica Sinica, 2018, 44(5): 865- 877.
doi: 10.16383/j.aas.2018.c170477
|
9 |
ZOU M, YOU M B, AKASHI T. Reconstruction of partially occluded facial image for classification. IEEJ Transactions on Electrical and Electronic Engineering, 2021, 16(4): 600- 608.
doi: 10.1002/tee.23335
|
10 |
PAN B W, WANG S F, XIA B. Occluded facial expression recognition enhanced through privileged information[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 566-573.
|
11 |
YOVEL G, DUCHAINE B. Specialized face perception mechanisms extract both part and spacing information: evidence from developmental prosopagnosia. Journal of Cognitive Neuroscience, 2006, 18(4): 580- 593.
doi: 10.1162/jocn.2006.18.4.580
|
12 |
LI Y, ZENG J B, SHAN S G, et al. Patch-gated CNN for occlusion-aware facial expression recognition[C]//Proceedings of the 24th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 2209-2214.
|
13 |
LI Y, ZENG J B, SHAN S G, et al. Occlusion aware facial expression recognition using CNN with attention mechanism. IEEE Transactions on Image Processing, 2019, 28(5): 2439- 2450.
doi: 10.1109/TIP.2018.2886767
|
14 |
WANG K, PENG X, YANG J, et al. Region attention networks for pose and occlusion robust facial expression recognition. IEEE Transactions on Image Processing, 2020, 29(1): 4057- 4069.
|
15 |
DING H, ZHOU P, CHELLAPPA R. Occlusion-adaptive deep network for robust facial expression recognition[C]//Proceedings of IEEE International Joint Conference on Biometrics. Washington D. C., USA: IEEE Press, 2021: 1-9.
|
16 |
王军, 赵凯, 程勇. 基于遮挡感知卷积神经网络的面部表情识别模型. 计算机工程, 2021, 47(10): 242- 251.
URL
|
|
WANG J, ZHAO K, CHENG Y. Facial expression recognition model based on convolutional neural network with occlusion perception. Computer Engineering, 2021, 47(10): 242- 251.
URL
|
17 |
ZENG J, SHAN S, CHEN X. Facial expression recognition with inconsistently annotated datasets[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 227-243.
|
18 |
WANG K, PENG X J, YANG J F, et al. Suppressing uncertainties for large-scale facial expression recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 6896-6905.
|
19 |
CHEN Y J, LIU S G. Deep partial occlusion facial expression recognition via improved CNN[C]//Proceedings of International Symposium on Visual Computing. Berlin, Geramny: Springer, 2020: 451-462.
|
20 |
RUAN L, HAN Y, SUN J, et al. Facial expression recognition in facial occlusion scenarios: a path selection multi-network. Displays, 2022, 74, 102245.
doi: 10.1016/j.displa.2022.102245
|
21 |
LUCEY P, COHN J F, KANADE T, et al. The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2010: 94-101.
|
22 |
LYONS M, AKAMATSU S, KAMACHI M, et al. Coding facial expressions with Gabor wavelets[C]//Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition. Washington D. C., USA: IEEE Press, 2002: 200-205.
|
23 |
ZHANG R. Making convolutional networks shift-invariant again[C]//Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA: International Machine Learning Society, 2019: 12712-12722.
|
24 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
25 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2818-2826.
|
26 |
LI S, DENG W H, DU J P. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2584-2593.
|
27 |
BARSOUM E, ZHANG C, FERRER C C, et al. Training deep networks for facial expression recognition with crowd-sourced label distribution[C]//Proceedings of the 18th ACM International Conference on Multimodal Interaction. New York, USA: ACM Press, 2016: 279-283.
|
28 |
GOODFELLOW I J, ERHAN D, CARRIER P L, et al. Challenges in representation learning: a report on three machine learning contests[C]//Proceedings of the 20th International Conference on Neural Information Processing. Berlin, Germany: Springer, 2013: 117-124.
|
29 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: [s. n. ], 2015: 1-10.
|
30 |
LI S, DENG W H. Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recognition. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019, 28(1): 356- 370.
doi: 10.1109/TIP.2018.2868382
|
31 |
FARZANEH A H, QI X J. Facial expression recognition in the wild via deep attentive center loss[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2021: 2401-2410.
|
32 |
HUANG C. Combining convolutional neural networks for emotion recognition[C]//Proceedings of IEEE MIT Undergraduate Research Technology Conference. Washington D. C., USA: IEEE Press, 2018: 1-4.
|
33 |
GEORGESCU M I, IONESCU R T, POPESCU M. Local learning with deep and handcrafted features for facial expression recognition. IEEE Access, 2019, 7, 64827- 64836.
doi: 10.1109/ACCESS.2019.2917266
|
34 |
MA F Y, SUN B, LI S T. Facial expression recognition with visual transformers and attentional selective fusion[J/OL]. IEEE Transactions on Affective Computing: 1-9[2022-07-26]. https://ieeexplore.ieee.org/document/9585378.
|
35 |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, 2020, 128(2): 336- 359.
|