作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (14): 150-152. doi: 10.3969/j.issn.1000-3428.2012.14.045

• 人工智能及识别技术 • 上一篇    下一篇

基于均值移动与粒子滤波融合的跟踪算法

王华冰,杨盈昀,张 拉,王子微   

  1. (中国传媒大学信息工程学院,北京 100024)
  • 收稿日期:2011-09-14 出版日期:2012-07-20 发布日期:2012-07-20
  • 作者简介:王华冰(1988-),女,硕士研究生,主研方向:数字电视技术;杨盈昀,教授;张 拉,硕士;王子微,硕士研究生
  • 基金资助:
    国家自然科学基金资助项目(60832004);中国传媒大学“211”工程三期重点学科建设基金资助项目(21103040108)

Tracking Algorithm Based on Fusion of Mean-shift and Particle Filtering

WANG Hua-bing, YANG Ying-yun, ZHANG La, WANG Zi-wei   

  1. (School of Information Engineering, Communication University of China, Beijing 100024, China)
  • Received:2011-09-14 Online:2012-07-20 Published:2012-07-20

摘要: 针对均值移动算法鲁棒性差以及粒子滤波算法计算量大、难以满足实时跟踪的特点,提出2种先均值移动后粒子滤波的融合算法,分别为粒子数目保持恒定的融合算法和粒子数目自适应的融合算法。实验结果证明,与已有算法相比,2种算法在实时性提高的同时,跟踪准确性和抗干扰能力没有明显下降。

关键词: 目标跟踪, 均值移动, 粒子滤波, 融合算法, 自适应, 实时跟踪

Abstract: This paper proposes two fusion algorithms based on poor robustness of Mean-shift algorithm and large computation of particle filtering algorithm. Both of the new algorithms take Mean-shift first and particle filtering later. The number of particles is constant and the number of particles is adaptive. Experimental results show that compared with existing algorithms, the real-time of new algorithms is improved, while tracking accuracy and anti-interference ability without significant decline.

Key words: object tracking, Mean-shift, particle filtering, fusion algorithm, self-adaptive, real-time tracking

中图分类号: