作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2012, Vol. 38 ›› Issue (21): 175-177. doi: 10.3969/j.issn.1000-3428.2012.21.047

• 人工智能及识别技术 • 上一篇    下一篇

基于SVM的说话人识别参数选择方法

徐 晨,曹 辉,赵 晓   

  1. (陕西师范大学物理学与信息技术学院陕西省超声重点实验室,西安 710100)
  • 收稿日期:2012-01-05 出版日期:2012-11-05 发布日期:2012-11-02
  • 作者简介:徐 晨(1987-),男,硕士研究生,主研方向:语音处理,人工智能;曹 辉,副教授、博士;赵 晓,硕士研究生
  • 基金资助:
    国家自然科学基金资助项目(11074159)

Speaker Recognition Parameter Selection Method Based on SVM

XU Chen, CAO Hui, ZHAO Xiao   

  1. (Shannxi Key Laboratory of Ultrasound, School of Physics & Information Technology, Shannxi Normal University, Xi’an 710100, China)
  • Received:2012-01-05 Online:2012-11-05 Published:2012-11-02

摘要: 针对支持向量机(SVM)计算复杂度高的问题,采用归一化和主元分析变换算法对语音数据进行预处理,并把K倍交叉验证与网络搜索法相结合应用到语音识别中。分析结果表明,与遗传算法和粒子群优化算法相比,该方法可以在识别率基本不变的情况下有效提高 SVM的参数寻优效率。

关键词: 支持向量机, 说话人识别, 主元分析, 交叉验证, 归一化

Abstract: For high computational complexity of Support Vector Machine(SVM), this paper uses normalized and Principal Component Analysis(PCA) transform algorithm for voice data pretreatment, combining K-fold cross validation with grid searching in speech recognition. Analysis results show that compared with GA and PSO, this method can effectively improve the SVM parameters optimization efficiency when the recognition rate is basically unchanged.

Key words: Support Vector Machine(SVM), speaker recognition, Principal Components Analysis(PCA), cross validation, normalization

中图分类号: