1 |
秦鹏, 唐川明, 刘云峰, 等. 基于改进YOLOv3的红外目标检测方法. 计算机工程, 2022, 48(3): 211- 219.
URL
|
|
QIN P, TANG C M, LIU Y F, et al. Infrared target detection method based on improved YOLOv3. Computer Engineering, 2022, 48(3): 211- 219.
URL
|
2 |
DAI X R, YUAN X, WEI X Y. TIRNet: object detection in thermal infrared images for autonomous driving. Applied Intelligence, 2021, 51(3): 1244- 1261.
doi: 10.1007/s10489-020-01882-2
|
3 |
ZHANG H Z, LUO C B, WANG Q, et al. A novel infrared video surveillance system using deep learning based techniques. Multimedia Tools and Applications, 2018, 77(20): 26657- 26676.
doi: 10.1007/s11042-018-5883-y
|
4 |
LI S S, LI Y J, LI Y, et al. YOLO-FIRI: improved YOLOv5 for infrared image object detection. IEEE Access, 2021, 9, 141861- 141875.
doi: 10.1109/ACCESS.2021.3120870
|
5 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 580-587.
|
6 |
|
7 |
|
8 |
张汝榛, 张建林, 祁小平, 等. 复杂场景下的红外目标检测. 光电工程, 2020, 47(10): 126- 135.
URL
|
|
ZHANG R Z, ZHANG J L, QI X P, et al. Infrared target detection and recognition in complex scene. Opto-Electronic Engineering, 2020, 47(10): 126- 135.
URL
|
9 |
徐诚极, 王晓峰, 杨亚东. Attention-YOLO: 引入注意力机制的YOLO检测算法. 计算机工程与应用, 2019, 55(6): 13-23, 125
URL
|
|
XU C J, WANG X F, YANG Y D. Attention-YOLO: YOLO detection algorithm that introduces attention mechanism. Computer Engineering and Applications, 2019, 55(6): 13-23, 125
URL
|
10 |
LOWE D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
11 |
VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2003: 1-9.
|
12 |
CHANG C C, LIN C J. LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1- 27.
|
13 |
|
14 |
BREHAR R, NEDEVSCHI S. Pedestrian detection in infrared images using HOG, LBP, gradient magnitude and intensity feature channels[C]//Proceedings of the 17th IEEE International Conference on Intelligent Transportation Systems. Washington D. C., USA: IEEE Press, 2014: 1669-1674.
|
15 |
MURESAN M P, BREHAR R, NEDEVSCHI S. Vision algorithms and embedded solution for pedestrian detection with far infrared camera[C]//Proceedings of the 10th IEEE International Conference on Intelligent Computer Communication and Processing. Washington D. C., USA: IEEE Press, 2014: 133-136.
|
16 |
GHOSE D, DESAI S M, BHATTACHARYA S, et al. Pedestrian detection in thermal images using saliency maps[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 988-997.
|
17 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
18 |
汪常建, 丁勇, 卢盼成. 融合改进FPN与关联网络的Faster R⁃CNN目标检测. 计算机工程, 2022, 48(2): 173- 179.
URL
|
|
WANG C J, DING Y, LU P C. Object detection using Faster R-CNN combining improved FPN and relation network. Computer Engineering, 2022, 48(2): 173- 179.
URL
|
19 |
ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refinement neural network for object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4203-4212.
|
20 |
邹慧海, 侯进. 改进SSD算法的道路小目标检测研究. 计算机工程, 2022, 48(5): 281- 288.
URL
|
|
ZOU H H, HOU J. Research on road small target detection with improved SSD algorithm. Computer Engineering, 2022, 48(5): 281- 288.
URL
|
21 |
HOU Q B, ZHANG L, CHENG M M, et al. Strip pooling: rethinking spatial pooling for scene parsing[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 4002-4011.
|
22 |
CAO Y, XU J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 1971-1980.
|
23 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13708-13717.
|
24 |
ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks, 2018, 107, 3- 11.
doi: 10.1016/j.neunet.2017.12.012
|
25 |
舒朗, 张智杰, 雷波. 一种针对红外目标检测的Dense-Yolov5算法研究. 光学与光电技术, 2021, 19(1): 69- 75.
URL
|
|
SHU L, ZHANG Z J, LEI B. Research on Dense-Yolov5 algorithm for infrared target detection. Optics & Optoelectronic Technology, 2021, 19(1): 69- 75.
URL
|
26 |
HUANG L, ZHOU Y, WANG T, et al. Delving into the estimation shift of batch normalization in a network[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 753-762.
|
27 |
ZHOU T, YU Z, CAO Y, et al. Study on an infrared multi-target detection method based on the pseudo-two-stage model. Infrared Physics & Technology, 2021, 118, 103883.
|
28 |
ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2921-2929.
|