[1] XIAO T, HONG J, MA J.Elegant:exchanging latent encodings with GAN for transferring multiple face attributes[C]//Proceedings of the European Conference on Computer Vision.Berlin, Germany:Springer, 2018:172-187. [2] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial networks[J].Communications of the ACM, 2020, 63(11):139-144. [3] ISOLA P, ZHU J Y, ZHOU T, et al.Image-to-image translation with conditional adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:5967-5976. [4] 曹仰杰, 贾丽丽, 陈永霞, 等.生成式对抗网络及其计算机视觉应用研究综述[J].中国图象图形学报, 2018, 23(10):1433-1449. CAO Y J, JIA L L, CHEN Y X, et al.Review of computer vision based on generative adversarial networks[J].Journal of Image and Graphics, 2018, 23(10):1433-1449.(in Chinese) [5] HUANG H, YU P S, WANG C.An introduction to image synthesis with generative adversarial nets[EB/OL].[2020-12-16].https://arxiv.org/pdf/1803.04469.pdf. [6] UPCHURCH P, GARDNER J, PLEISS G, et al.Deep feature interpolation for image content changes[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6090-6099. [7] ZHU J Y, PARK T, ISOLA P, et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2242-2251. [8] 林泓, 任硕, 杨益, 等.融合自注意力机制和相对鉴别的无监督图像翻译[J].自动化学报, 2021, 47(9):2226-2237. LIN H, REN S, YANG Y, et al.Unsupervised image-to-image translation with self-attention and relativistic discriminator adversarial networks[J].Acta Automatica Sinice, 2021, 47(9):2226-2237(in Chinese). [9] PERARNAU G, VAN DE WEIJER J, RADUCANU B, et al.Invertible conditional gans for image editing[EB/OL].[2021-01-16].https://arxiv.org/pdf/1611.06355.pdf. [10] MIRZA M, OSINDERO S.Conditional generative adversarial nets[EB/OL].[2021-12-16].https://arxiv.org/pdf/1411.1784.pdf. [11] HUANG X, LIU M Y, BELONGIE S, et al.Multimodal unsupervised image-to-image translation[C]//Proceedings of European Conference on Computer Vision.Munich, Germany:Springer, 2018:179-196. [12] LIU M Y, BREUEL T, KAUTZ J.Unsupervised image-to-image translation networks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2017:700-708. [13] CHOI Y, CHOI M, KIM M, et al.StarGAN:unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8789-8797. [14] CHOI Y, UH Y, YOO J, et al.StarGAN v2:diverse image synthesis for multiple domains[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:8188-8197. [15] LIU M, DING Y, XIA M, et al.STGAN:a unified selective transfer network for arbitrary image attribute editing[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:3668-3677. [16] HE Z, ZUO W, KAN M, et al.AttGAN:facial attribute editing by only changing what you want[J].IEEE Transactions on Image Processing, 2019, 28(11):5464-5478. [17] CHUNG J, GULCEHRE C, CHO K H, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].[2021-12-16].https://arxiv.org/pdf/1412.3555.pdf. [18] WU P W, LIN Y J, CHANG C H, et al.Relgan:multi-domain image-to-image translation via relative attributes[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:5914-5922. [19] HUANG X, BELONGIE S.Arbitrary style transfer in real-time with adaptive instance normalization[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:1510-1519. [20] JOLICOEUR-MARTINEAU A.The relativistic discriminator:a key element missing from standard GAN[EB/OL].[2020-12-16].https://arxiv.org/pdf/1807.00734.pdf. [21] JOLICOEUR-MARTINEAU A, MITLIAGKAS I.Connections between support vector machines, wasserstein distance and gradient-penalty GANs[EB/OL].[2020-12-16].https://arxiv.org/pdf/1910.06922.pdf. [22] LIU Z, LUO P, WANG X, et al.Deep learning face attributes in the wild[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:3730-3738. [23] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al.GANs trained by a two time-scale update rule converge to a local nash equilibrium[EB/OL].[2020-12-15].https://arxiv.org/pdf/1706.08500.pdf. [24] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of IEEE conference on computer vision and pattern recognition.Washington D.C., USA:IEEE Press, 2017:1800-1807. [25] SZEGEDY C, VANHOUCKE V, IOFFE S, et al.Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:2818-2826. |