作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (2): 230-236. doi: 10.19678/j.issn.1000-3428.0059684

• 图形图像处理 • 上一篇    下一篇

基于表观的归一化坐标系分类视线估计方法

戴忠东1, 任敏华2   

  1. 1. 上海复控华龙微系统技术有限公司, 上海 200439;
    2. 中国电子科技集团公司第三十二研究所, 上海 201808
  • 收稿日期:2020-10-10 修回日期:2021-02-07 发布日期:2021-02-08
  • 作者简介:戴忠东(1968-),男,高级工程师、硕士,主研方向为计算机视觉、人工智能;任敏华,研究员、硕士。
  • 基金资助:
    上海市国防科技工业办公室支持基金(GFKJ-2019-060)。

Gaze Estimation Method Using Normalized Coordinate System Classification Based on Apparent

DAI Zhongdong1, REN Minhua2   

  1. 1. Shanghai Fudan-Holding Hualong Microsystem Technology Co., Ltd., Shanghai 200439, China;
    2. The 32nd Research Institute of China Electronics Technology Group Corporation, Shanghai 201808, China
  • Received:2020-10-10 Revised:2021-02-07 Published:2021-02-08

摘要: 视线估计能够反映人的关注焦点,对理解人类的情感、兴趣等主观意识有重要作用。但目前用于视线估计的单目眼睛图像容易因头部姿态的变化而失真,导致视线估计的准确性下降。提出一种新型分类视线估计方法,利用三维人脸模型与单目相机的内在参数,通过人脸的眼睛与嘴巴中心的三维坐标形成头部姿态坐标系,从而合成相机坐标系与头部姿态坐标系,并建立归一化坐标系,实现相机坐标系的校正。复原并放大归一化得到的灰度眼部图像,建立基于表观的卷积神经网络模型分类方法以估计视线方向,并利用黄金分割法优化搜索,进一步降低误差。在MPIIGaze数据集上的实验结果表明,相比已公开的同类算法,该方法能降低约7.4%的平均角度误差。

关键词: 视线估计, 单目眼睛图像, 头部姿态, 归一化坐标系, 黄金分割法, 卷积神经网络

Abstract: Gaze estimation can naturally reflect people's focus of attention, and plays an important role in understanding human emotions, interests and other subjective consciousness.However, monocular images used for gaze estimation tend to be distorted due to head pose changes, which reduces the accuracy of gaze estimation.This paper proposes a new classification-based gaze estimation method.A three-dimensional face model and the inherent parameters of monocular camera are used to form a head pose coordinate system through the three-dimensional coordinates of the center of eye and mouth.The camera coordinate system and the head pose coordinate system are combined to establish a normalized coordinate system, and the camera coordinate system is corrected.The gray eye image is obtained by restoration, magnification and normalization.Finally a classification method using an appearance-based convolution neural network model is established to estimate gaze direction, and the golden section method is used to optimize the search process and further reduce errors.The experimental results show that compared with other similar methods, the proposed method can reduce the average angle errors by about 7.4% on the commonly used MPIIGaze test dataset.

Key words: gaze estimation, monocular eye image, head pose, normalized coordinate system, golden section method, Convolutional Neural Network(CNN)

中图分类号: