作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 图形图像处理 • 上一篇    下一篇

基于IEKF-SLAM的未知场景增强现实跟踪注册算法

赵越1,2 ,李晶皎1,王爱侠1,杨丹1   

  1. (1.东北大学信息科学与工程学院,沈阳 110819; 2.渤海大学信息科学与技术学院,辽宁 锦州 121013)
  • 收稿日期:2015-01-12 出版日期:2016-01-15 发布日期:2015-01-15
  • 作者简介:赵越(1979-),女,讲师、博士,主研方向为增强现实;李晶皎,教授、博士生导师;王爱侠、杨丹,讲师、博士。
  • 基金资助:
    中央高校基础科研青年教师创新基金资助项目(N130404004);沈阳市科技局基金资助项目(F12277181)。

Tracking and Registration Algorithm of Augmented Reality on Unknown Scene Based on IEKF-SLAM

ZHAO Yue 1,2,LI Jingjiao 1,WANG Aixia 1,YANG Dan 1   

  1. (1.School of Information Science & Engineering,Northeastern University,Shenyang 110819,China; 2.College of Information Science and Technology,Bohai University,Jinzhou,Liaoning 121013,China)
  • Received:2015-01-12 Online:2016-01-15 Published:2015-01-15

摘要: 基于扩展卡尔曼滤波器的即时定位与地图构建(EKF-SLAM)算法存在非线性估计结果不一致的问题。为此,提出一种利用多项式改进扩展卡尔曼滤波器的SLAM算法IEKF-SLAM,在此基础上设计一种用于未知场景的增强现实跟踪注册算法,包含地图构建与更新、跟踪注册2个并 行模块。地图构建与更新模块利用IEKF-SLAM算法实现,跟踪注册模块在捕获视频帧后通过构建的地图库估计摄像机位姿,将提取视频帧中的特征点与地图库中的特征点进行匹配,并对摄像机位姿进行更新,实现虚拟物体的渲染注册。实验结果证明,IEKF-SLAM算法的估计结果 一致性优于EKF-SLAM算法,且增强现实的跟踪注册效果更好。

关键词: 扩展卡尔曼滤波器, 即时定位与地图构建, 一致性, 跟踪注册, 增强现实

Abstract: iming at the problem that nonlinear estimation results of Extended Kalman Filter-based Simultaneous Localization and Mapping(EKF-SLAM) algorithm are inconsistent,this paper proposes an Improved Extended Kalman Filter-based Simultaneous Localization and Mapping(IEKF-SLAM) algorithm with polynomial.And on this basis,it designs a tracking and registration algorithm of Augmented Reality(AR) on unknown scene including mapping and updating,tracking and registration two parallel modules.Mapping and updating module uses the IEKF-SLAM algorithm.The tracking and registration module after video frame is captured,camera pose is estimated by constructing a map library.Then video frames feature points are extracted and the feature points are matched to the map library.The pose of the camera is updated.Then virtual objects are rendered and registered.Experimental results show that the consistency of the IEKF-SLAM algorithm is superior to the EKF-SLAM algorithm,and the result of tracking and registration of AR is satisfactory.

Key words: Extended Kalman Filter(EKF), Simultaneous Localization and Mapping(SLAM), consistency, tracking and registration, Augmented Reality(AR)

中图分类号: