[1] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [2] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2999-3007. [3] LIU W.SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, German:Springer, 2016:21-37. [4] REDMON J, FARHADI A.YOLO9000:better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6517-6525. [5] RIZVE M N, DUARTE K, RAWAT Y S, et al.In defense of pseudo-labeling:an uncertainty-aware pseudo-label selection framework for semi-supervised learning[EB/OL].[2021-11-20].https://arxiv.org/abs/2101.06329. [6] LIX, SUN Q, LIU Y, et al.Learning to self-train for semi-supervised few-shot classification[C]//Proceedings of Annual Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2019:10276-10286. [7] XIE Q Z, LUONG M T, HOVY E, et al.Self-training with noisy student improves ImageNet classification[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:10684-10695. [8] 尹玉, 詹永照, 姜震.伪标签置信选择的半监督集成学习视频语义检测[J].计算机应用, 2019, 39(8):2204-2209. YIN Y, ZHAN Y Z, JIANG Z.Semi-supervised ensemble learning for video semantic detection based on pseudo-label confidence selection[J].Journal of Computer Applications, 2019, 39(8):2204-2209.(in Chinese) [9] 史蕴豪, 许华, 刘英辉.一种基于伪标签半监督学习的小样本调制识别算法[J].西北工业大学学报, 2020, 38(5):1074-1083. SHI Y H, XU H, LIU Y H.A few-shot modulation recognition method based on pseudo-label semi-supervised learning[J].Journal of Northwestern Polytechnical University, 2020, 38(5):1074-1083.(in Chinese) [10] SOHN K, ZHANG Z Z, LI C L, et al.A simple semi-supervised learning framework for object detection[EB/OL].[2021-11-20].https://arxiv.org/abs/2005.04757. [11] ZHOU Q, YU C H, WANG Z B, et al.Instant-teaching:an end-to-end semi-supervised object detection framework[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:4079-4088. [12] LIU Y C, MA C Y, HE Z J, et al.Unbiased teacher for semi-supervised object detection[EB/OL].[2021-11-20].https://arxiv.org/abs/2102.09480. [13] PHAM H, DAI Z H, XIE Q Z, et al.Meta pseudo labels[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:11552-11563. [14] WANG Y K, XU C M, LIU C, et al.Instance credibility inference for few-shot learning[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:12833-12842. [15] ISCEN A, TOLIAS G, AVRITHIS Y, et al.Label propagation for deep semi-supervised learning[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:5065-5074. [16] SOHN K, BERTHELOT D, LI C L, et al.FixMatch:simplifying semi-supervised learning with consistency and confidence[EB/OL].[2021-11-20].https://arxiv.org/abs/2001.07685. [17] BERTHELOT D, CARLINI N, GOODFELLOW I, et al.MixMatch:a holistic approach to semi-supervised learning[EB/OL].[2021-11-20].https://arxiv.org/abs/1905.02249. [18] YANG X L, SONG Z X, KING I, et al.A survey on deep semi-supervised learning[J].IEEE Transactions on Knowledge and Data Engineering, 2022, 36(7):1-20. [19] XU M D, ZHANG Z, HU H, et al.End-to-end semi-supervised object detection with soft teacher[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:3040-3049. [20] FOONG A Y K, BURT D R, LI Y Z, et al.On the expressiveness of approximate inference in Bayesian neural networks[EB/OL].[2021-11-20].https://arxiv.org/abs/1909.00719. [21] WANG H, YEUNG D Y.Towards Bayesian deep learning:a framework and some existing methods[J].IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12):3395-3408. [22] GAL Y, GHAHRAMANI Z.Dropout as a Bayesian approximation:representing model uncertainty in deep learning[EB/OL].[2021-11-20].https://arxiv.org/abs/1506.02142. [23] BRACH K, SICK B, DÜRR O.Single shot MC dropout approximation[EB/OL].[2021-11-20].https://arxiv.org/abs/2007.03293. [24] BERTONI L, KREISS S, ALAHI A.MonoLoco:monocular 3D pedestrian localization and uncertainty estimation[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:6860-6870. [25] ABDAR M.A review of uncertainty quantification in deep learning:techniques, applications and challenges[J].Information Fusion, 2021, 76:243-297. [26] CAI Z W, RAVICHANDRAN A, MAJI S, et al.Exponential moving average normalization for self-supervised and semi-supervised learning[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:194-203. |