1 |
胡帅, 李华玲, 郝德琛. 改进U-Net的多级边缘增强医学图像分割网络. 计算机工程, 2024, 50(4): 286- 293.
URL
|
|
HU S, LI H L, HAO D C. Improved U-Net multi-level edge enhanced medical image segmentation network. Computer Engineering, 2024, 50(4): 286- 293.
URL
|
2 |
SHEN W H, XU W B, ZHANG H Y, et al. Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net. Inverse Problems & Imaging, 2021, 15(6): 1333.
|
3 |
XIONG Z H, XIA Q, HU Z Q, et al. A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Medical Image Analysis, 2021, 67, 101832.
doi: 10.1016/j.media.2020.101832
|
4 |
|
5 |
|
6 |
PEIRIS H, CHEN Z L, EGAN G, et al. Duo-SegNet: adversarial dual-views for semi-supervised medical image segmentation[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2108.11154.
|
7 |
刘少鹏, 洪佳明, 梁杰鹏, 等. 面向医学图像分割的半监督条件生成对抗网络. 软件学报, 2020, 31(8): 2588- 2602.
URL
|
|
LIU S P, HONG J M, LIANG J P, et al. Medical image segmentation using semi-supervised conditional generative adversarial nets. Journal of Software, 2020, 31(8): 2588- 2602.
URL
|
8 |
TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[EB/OL]. [2023-07-05]. http://arxiv.org/abs/1703.01780v6.
|
9 |
YU L Q, WANG S J, LI X M, et al. Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation[EB/OL]. [2023-07-05]. https://arxiv.org/abs/1907.07034.
|
10 |
LUO X D, WANG G T, LIAO W J, et al. Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency. Medical Image Analysis, 2022, 80, 102517.
doi: 10.1016/j.media.2022.102517
|
11 |
WU Y C, GE Z Y, ZHANG D H, et al. Mutual consistency learning for semi-supervised medical image segmentation. Medical Image Analysis, 2022, 81, 102530.
doi: 10.1016/j.media.2022.102530
|
12 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
13 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11534-11542.
|
14 |
|
15 |
|
16 |
郭祥振, 李思潼, 卢锐, 等. 基于多任务联合注意力的结肠息肉分割网络. 计算机工程, 2024, 50(2): 327- 336.
URL
|
|
GUO X Z, LI S T, LU R, et al. Colon polyp segmentation network based on multitasking attention and joint attention mechanism. Computer Engineering, 2024, 50(2): 327- 336.
URL
|
17 |
PETIT O, THOME N, RAMBOUR C, et al. U-Net transformer: self and cross attention for medical image segmentation[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2103.06104.
|
18 |
ZHAO C J, XIANG S, WANG Y Q, et al. Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D left atrium. Expert Systems with Applications, 2023, 214, 119105.
doi: 10.1016/j.eswa.2022.119105
|
19 |
ZHU Y, YANG J, LIU S Q, et al. Inherent consistent learning for accurate semi-supervised medical image segmentation[EB/OL]. [2023-07-05]. http://arxiv.org/abs/2303.14175v4.
|
20 |
LUO X D, HU M H, SONG T, et al. Semi-supervised medical image segmentation via cross teaching between CNN and Transformer[EB/OL]. [2023-07-05]. http://arxiv.org/abs/2112.04894v2.
|
21 |
|
22 |
CUI W H, LIU Y L, LI Y X, et al. Semi-supervised brain lesion segmentation with an adapted mean teacher model[EB/OL]. [2023-07-05]. https://arxiv.org/abs/1903.01248.
|
23 |
|
24 |
|
25 |
BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?. IEEE Transactions on Medical Imaging, 2018, 37(11): 2514- 2525.
doi: 10.1109/TMI.2018.2837502
|
26 |
|
27 |
WU Y C, XU M F, GE Z Y, et al. Semi-supervised left atrium segmentation with mutual consistency training[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2103.02911.
|
28 |
VERMA V, KAWAGUCHI K, LAMB A, et al. Interpolation consistency training for semi-supervised learning. Neural Networks, 2022, 145, 90- 106.
doi: 10.1016/j.neunet.2021.10.008
|