参考文献
[1]杨立才,李佰敏,李光林,等.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241.
[2]尧德中.脑机接口:从神奇到现实的转变[J].中国生物医学工程学报,2014,33(6):641-643.
[3]Cao Lei,Li Jie,Ji Hongfei,et al.A Hybrid Brain Computer Interface System Based on the Neurophysiological Protocol and Brain Actuated Switch for Wheelchair Control[J].Journal of Neuroscience Methods,2014,229 (30):33-43.
[4]田银,李沛洋,徐鹏.基于Adaboost的脑机接口分类算法研究[J].电子科技大学学报,2013,42(5):791-793.
[5]刘美春.基于运动想象的脑-机接口的模式识别研究[D].广州:华南理工大学,2009.
[6]王金甲,杨亮.脑机接口中多线性主成分分析的张量特征提取[J].生物医学工程杂志,2015,32(3):526-530.
[7]Johannesm G,Pfurtscheller G,Flyvbjerg H.Designing Optimal Spatial Filters for Single-trial EEG Classification in a Movement Task[J].Clinical Neurophysiology,1999,110(5):787-798.
[8]吕俊,谢胜利,张晋龙.脑-机接口中基于ERS/ERD的自适应空间滤波算法[J].电子与信息学报,2009,31(2):314-318.
[9]李明爱,崔燕,杨金福,等.基于HHT和CSSD的多域融合自适应脑电特征提取方法[J].电子学报,2013,41(12):2479-2486.
[10]Liao Xiang,Yao Dezhong,Wu Dan.Combining Spatial Filters for the Classification of Single-trial EEG in a Finger Movement Task[J].IEEE Transactions on Biomedical Engineering,2007,54(5):821-831.
[11]伏云发,徐保磊,李永程,等.基于运动相关皮层电位握力运动模式识别研究[J].自动化学报,2014,40(6):1045-1057.
[12]何海洋,罗志增.基于K紧邻互信息估计的EEG伪迹消除方法[J].计算机工程,2013,39(6):255-260.
[13]Fu Yun,Yan Shuicheng,Huang T S.Classification and Feature Extraction by Simplexization[J].IEEE Transactions on Information Forensics and Security,2008,3(1):91-100.
[14]Atkeson C G,Moore A W,Schaal S.Locally Weighted Learning[J].Artificial Intelligence Review,1997,11(1-5):11-73.
[15]Sun Yijun.Iterative Relief for Feature Weighting:Algorithms,Theories,and Applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6):1035-1051.
[16]Beyer K S,Goldstein J,Ramakrishnan R,et al.When Is Nearest Neighbor Meaningful[C]//Proceedings of the 7th International Conference on Database Theory.New York,USA:ACM Press,1999:217-235.
[17]万伟勋.映射压缩的条件与Banach型不动点定理[J].数学学报,1984,27(1):35-52.
编辑顾逸斐 |