作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 图形图像处理 • 上一篇    下一篇

基于多尺度局部方差的图像融合质量评价算法

罗兰1,杜钦生2   

  1. (1.吉林大学 汽车仿真与控制国家重点实验室,长春 130025; 2.长春大学 计算机科学与技术学院,长春 130022)
  • 收稿日期:2016-01-18 出版日期:2017-02-15 发布日期:2017-02-15
  • 作者简介:罗兰(1979—),女,工程师、硕士;杜钦生,副教授、博士。
  • 基金资助:
    吉林省自然科学基金(2015323,2015327);吉林省科技发展计划项目(20140101206jc-19)。

Image Fusion Quality Assessment Algorithm Based on Multi-scale Local Variance

LUO Lan 1,DU Qinsheng 2   

  1. (1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130025,China; 2.College of Computer Science and Technology,Changchun University,Changchun 130022,China)
  • Received:2016-01-18 Online:2017-02-15 Published:2017-02-15

摘要: 为对视觉信息的失真做出预测,提出一种基于局部方差的图像融合质量评价算法。采用多尺度表示技术在不同尺度上分析图像,从而达到精确评估图像融合算法性能的目的。算法分为3个步骤:图像多尺度分解,层层比较源图像和融合图像的相似度,合并所有的相似度以获得最终评分。参数选择实验和融合算法比较实验结果表明,提出算法的评价结果与主观评价一致,具有较高的可靠性。

关键词: 图像处理, 图像融合, 质量评价, 局部变量, 多尺度图像表示

Abstract: In this paper,an image fusion quality assessment algorithm based on local variance is proposed to predict the distortion on visual information.Considering that multi-scale representation technology allows for image analysis in different scale,multi-scale image representation is used to accurately evaluate the performance of image fusion algorithm.The proposed algorithm contains three steps,multi-scale image decomposition,measuring similarities of source image and fused image layer by layer,and merging all similarities to get the final score.Experimental results of parameter selection and fusion algorithms comparison show that the evaluation result of the proposed algorithm is consistent with the subjective evaluation and has high reliability.

Key words: image processing, image fusion, quality assessment, local variance, multi-scale image representation

中图分类号: