作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 图形图像处理 • 上一篇    下一篇

基于同步更新的背景检测显著性优化

赵艳艳,沈西挺   

  1. (河北工业大学 计算机科学与软件学院,天津 300400)
  • 收稿日期:2016-10-12 出版日期:2017-10-15 发布日期:2017-10-15
  • 作者简介:赵艳艳(1990—),女,硕士研究生,主研方向为计算机图像处理;沈西挺(通信作者),教授。
  • 基金资助:
    天津市应用基础与前沿技术研究重点项目(14JCZDJC1600)。

Saliency Optimization of Background Detection Based on Synchronous Updating

ZHAO Yanyan,SHEN Xiting   

  1. (School of Computer Science and Engineering,Hebei University of Technology,Tianjin 300400,China)
  • Received:2016-10-12 Online:2017-10-15 Published:2017-10-15

摘要: 现有显著性检测方法大多存在检测误差大、主观性强、对背景先验知识约束过少等局限性。为此,提出一种背景检测显著性同步更新优化方法。通过改变背景先验的约束范围,计算显著图与真值图的相似程度,利用置信度量进行同步传播更新,使相邻像素间的关联性得以加强,显著目标边缘更清晰。在标准数据集上的实验结果表明,与现有基于背景的显著性检测方法相比,优化方法具有更高的检测精度。

关键词: 图像检索, 目标检测, 背景度量, 边界先验, 同步更新

Abstract: The existing saliency detection methods have many limitations,such as large detection error,strong subjectivity and too little restriction on the background prior knowledge.So this paper proposes a synchronization update optimization method based on the saliency of backgrounddetection.Through changing the constraints of background prior,the similarity degrees of significant graphs and truth graphs are calculated,and the confidence metric is used to synchronize the propagation update.This method strengthens the correlation between adjcent pixels and makes significant target edge clearer.Experimental results on the standard dataset show that,the optimization algorithm significantly improves the detection accuracy compared with existing background-based saliency detection methods.

Key words: image retrieval, object detection, background measure, boundary prior, synchronous updating

中图分类号: