作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2009, Vol. 35 ›› Issue (16): 65-67.

• 软件技术与数据库 • 上一篇    下一篇

基于项目的非邻近序列模式推荐算法

李 伟1,王新房1,2,刘 妮2   

  1. (1. 西安理工大学计算机科学与工程学院,西安 710048;2. 西安理工大学自动化与信息工程学院,西安 710048)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2009-08-20 发布日期:2009-08-20

Item-based Non-neighbouring Sequential Pattern Recommendation Algorithms

LI Wei1, WANG Xin-fang1,2, LIU Ni2   

  1. (1. School of Computer Science & Engineering, Xi’an University of Technology, Xi’an 710048; 2. School of Automation & Information Engineering, Xi’an University of Technology, Xi’an 710048)
  • Received:1900-01-01 Revised:1900-01-01 Online:2009-08-20 Published:2009-08-20

摘要: 针对推荐系统存在的稀疏性问题,提出将非邻近序列模式挖掘算法与基于项目的协作过滤推荐算法相结合的推荐方法,通过构造Markov概率的路径加权转移矩阵,计算资源被推荐的可能性,向用户进行推荐。结果证明,在数据稀疏的情况下,较传统的基于项目的协作过滤推荐算法,该算法能有效提高推荐系统的推荐质量。

关键词: 推荐系统, 稀疏性问题, 非邻近序列模式挖掘算法, 基于项目的协作过滤, 路径加权求和

Abstract: To solve the sparsity problems of recommender systems, a recommendation method is designed by means of the combination of the non-neighbouring sequential pattern mining algorithms and the item-based Collaborative Filtering(CF) recommendation algorithms. By constructing the Markov probability transfer matrix according to the paths weight sum algorithms, it computes the recommendation possibility of resources and recommends to users. Experimental results show that, on the condition of sparse data, it can improve the recommendation quality compared with the traditional item-based Collaborative Filtering recommendation algorithms.

Key words: recommender systems, sparsity problems, non-neighbouring sequential pattern mining algorithms, item-based Collaborative Filtering(CF), path weighted sum

中图分类号: