摘要: 提出一种实体关系抽取方案,该方案根据实体关系抽取的特点,在常用特征基础上新增语义角色特征用于构建特征向量,并利用支持向量机构造分类器。在SemEval-2010评测任务8提供的数据上进行实验,在判断候选实体对的关系类型上F1值达到81.6%,与未加入语义角色特征相比提高4%,结果表明该方案语义角色特征有利于实体语义关系抽取。
关键词:
关系抽取,
语义角色特征,
支持向量机,
特征向量,
分类器
Abstract: This paper proposes a new entity relation extraction method with a variety of common features plus semantic role features according to the characteristics of entity relation extraction and using the feature vector to build a SVM-classifier. When judging the relation type, this method achieves the F1 measure of 81.6% which is increased by 4% compared with no semantic role features on the data supplied by the evaluation task eight of SemEval-2010. Experimental results show that semantic role feature is benefit to entity relation extraction.
Key words:
relation extraction,
semantic role features,
Support Vector Machine(SVM),
feature vector,
classifier
中图分类号:
毛小丽, 何中市, 邢欣来, 刘莉. 基于语义角色的实体关系抽取[J]. 计算机工程, 2011, 37(17): 143-145.
MAO Xiao-Li, HE Zhong-Fu, GENG Xin-Lai, LIU Chi. Entity Relation Extraction Based on Semantic Role[J]. Computer Engineering, 2011, 37(17): 143-145.