1 |
WANG H L, QIN K, LU G, et al. Document-level relation extraction using evidence reasoning on RST-graph. Knowledge-Based Systems, 2021, 228, 107274.
doi: 10.1016/j.knosys.2021.107274
|
2 |
WANG H L, QIN K, DUAN G D, et al. Denoising graph inference network for document-level relation extraction. Big Data Mining and Analytics, 2023, 6 (2): 248- 262.
doi: 10.26599/BDMA.2022.9020051
|
3 |
|
4 |
TANG H Z, CAO Y N, ZHANG Z Y, et al. HIN: hierarchical inference network for document-level relation extraction[C]//Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, Germany: Springer, 2020: 197-209.
|
5 |
|
6 |
LI J Y, XU K, LI F, et al. MRN: a locally and globally mention-based reasoning network for document-level relation extraction[C]//Proceedings of the Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, USA: Association for Computational Linguistics, 2021: 1359-1370.
|
7 |
XU B F, WANG Q, LÜ Y J, et al. Entity structure within and throughout: modeling mention dependencies for document-level relation extraction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 14149-14157.
|
8 |
ZHOU W X, HUANG K, MA T Y, et al. Document-level relation extraction with adaptive thresholding and localized context pooling[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 14612-14620.
|
9 |
李岳泽, 左祥麟, 左万利, 等. 基于BERT-GCN的因果关系抽取. 吉林大学学报(理学版), 2023, 61 (2): 325- 330.
URL
|
|
LI Y Z, ZUO X L, ZUO W L, et al. Causality extraction based on BERT-GCN. Journal of Jilin University(Science Edition), 2023, 61 (2): 325- 330.
URL
|
10 |
DAI Y, SHOU L J, GONG M, et al. Graph fusion network for text classification. Knowledge-Based Systems, 2022, 236, 107659.
doi: 10.1016/j.knosys.2021.107659
|
11 |
GUO Z J, ZHANG Y, TENG Z Y, et al. Densely connected graph convolutional networks for graph-to-sequence learning. Transactions of the Association for Computational Linguistics, 2019, 7, 297- 312.
doi: 10.1162/tacl_a_00269
|
12 |
CHRISTOPOULOU F, MIWA M, ANANIADOU S. Connecting the dots: document-level neural relation extraction with edge-oriented graphs[EB/OL]. [2023-09-30]. http://arxiv.org/abs/1909.00228.
|
13 |
LI B, YE W, SHENG Z H, et al. Graph enhanced dual attention network for document-level relation extraction[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA: International Committee on Computational Linguistics, 2020, 1551-1560.
|
14 |
WANG D, HU W, CAO E, et al. Global-to-local neural networks for document-level relation extraction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: International Committee on Computational Linguistics, 2020: 3711-3721.
|
15 |
马建红, 龚天, 姚爽. 基于证据句与图卷积网络的文档级关系抽取. 计算机工程, 2023, 49 (8): 104- 110.
doi: 10.19678/j.issn.1000-3428.0065461
|
|
MA J H, GONG T, YAO S. Document-level relation extraction based on evidential sentences and graph convolutional network. Computer Engineering, 2023, 49 (8): 104- 110.
doi: 10.19678/j.issn.1000-3428.0065461
|
16 |
ZHANG Z Y, YU B W, SHU X B, et al. Document-level relation extraction with dual-tier heterogeneous graph[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA: International Committee on Computational Linguistics, 2020: 1630-1641.
|
17 |
NAN G S, GUO Z J, SEKULIĆ I, et al. Reasoning with latent structure refinement for document-level relation extraction[EB/OL]. [2023-09-30]. http://arxiv.org/abs/2005.06312.
|
18 |
ZENG S, XU R X, CHANG B B, et al. Double graph based reasoning for document-level relation extraction[EB/OL]. [2023-09-30]. http://arxiv.org/abs/2009.13752.
|
19 |
|
20 |
|
21 |
PENG N Y, POON H, QUIRK C, et al. Cross-sentence N-ary relation extraction with graph LSTMs. Transactions of the Association for Computational Linguistics, 2017, 5, 101- 115.
doi: 10.1162/tacl_a_00049
|
22 |
JUGRAN S, KUMAR A, TYAGI B S, et al. Extractive automatic text summarization using SpaCy in Python & NLP[C]//Proceedings of the International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). Washington D. C., USA: IEEE Press, 2021: 582-585.
|
23 |
JI Y F, EISENSTEIN J. Representation learning for text-level discourse parsing[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, USA: Association for Computational Linguistics, 2014: 13-24.
|
24 |
ZAPOROJETS K, DELEU J, DEVELDER C, et al. DWIE: an entity-centric dataset for multi-task document-level information extraction. Information Processing & Management, 2021, 58 (4): 102563.
doi: 10.1016/j.ipm.2021.102563
|
25 |
|
26 |
LI J, SUN Y, JOHNSON R J, et al. BioCreative V CDR task corpus: a resource for chemical disease relation extraction. The Journal of Biological Databases and Curation, 2016, 1, 10.
doi: 10.1093/database/baw068
|
27 |
YUAN Y J, LIU L Y, TANG S L, et al. Cross-relation cross-bag attention for distantly-supervised relation extraction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019 419-426.
|
28 |
|
29 |
|
30 |
LIU H F, KANG Z, ZHANG L Z, et al. Document-level relation extraction with cross-sentence reasoning graph[EB/OL]. [2023-09-30]. http://arxiv.org/abs/2303.03912.
|