作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 人工智能及识别技术 • 上一篇    下一篇

融合核主成分分析和最小距离鉴别投影的人脸识别算法

刘君,黄燕琪,熊邦书   

  1. (南昌航空大学信息工程学院,南昌 330063)
  • 收稿日期:2015-03-02 出版日期:2016-04-15 发布日期:2016-04-15
  • 作者简介:刘君(1980-),男,副教授、博士,主研方向为数字图像处理;黄燕琪,硕士研究生;熊邦书,教授、博士。
  • 基金资助:
    国家自然科学基金资助项目(61163047);江西省教育厅基金资助项目(GJJ14503)。

Face Recognition Algorithm Fused Kernel Principal Component Analysis and Minimum Distance Discriminant Projection

LIU Jun,HUANG Yanqi,XIONG Bangshu   

  1. (School of Information Engineering,Nanchang Hangkong University,Nanchang 330063,China)
  • Received:2015-03-02 Online:2016-04-15 Published:2016-04-15

摘要: 针对人脸识别问题,在原有的最小距离鉴别投影算法的基础上,根据核主成分分析(KPCA)方法,提出一种新的融合核主成分分析和最小距离的鉴别投影算法。运用KPCA对高维样本空间进行降维,通过核技巧将样本映射到高维非线性空间,继而在降维后的核子空间上通过鉴别投影方法计算其相应的投影矩阵,采用最近邻分类方法对样本进行分类并最终实现人脸识别。在ORL,FERET和YALE人脸库上的实验结果表明,该算法的识别率优于其他算法,可避免高维矩阵的计算复杂问题,同时定义的核子空间相似度权重也较好地保持了样本之间的近邻关系。

关键词: 主成分, 核主成分, 核子空间, 鉴别投影, 人脸识别, 特征提取

Abstract: By fusing Kernel Principal Component Analysis(KPCA) and Minimum Distance Projection(MDP),a new method based on the original minimum distance differential projection is developed to address the face recognition problem.Different from the classical minimum-distance discriminant projection algorithm,the new algorithm is based on dimensionality reduction algorithm.By using KPCA to reduce the dimension of these samples,they are mapped to a high-dimensional nonlinear space.The corresponding projection matrix is calculated in the dimension-reduced nuclear space by differential projection method.The nearest neighbor classification method is adopted to classify these samples and the face recognition is succeeded eventually.Experimental results on the ORL,FERET,and YALE face databases show that the proposed algorithm can outperform other algorithms.It can be avoided by using the nuclear technique to extract the nonlinear feature of the face image,and on the same time,the neighbor relationship of the samples is also kept by the defined similarity weight of the nuclear space.

Key words: principal component, kernel principal component, kernel subspace, discriminant projection, face recognition, feature extraction

中图分类号: