作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 人工智能及识别技术 • 上一篇    下一篇

基于IPOS-SVM的大学生出行方式识别研究

吴麟麟,杨彪,景鹏   

  1. (江苏大学 汽车与交通工程学院,江苏 镇江 212013)
  • 收稿日期:2016-11-14 出版日期:2018-01-15 发布日期:2018-01-15
  • 作者简介:吴麟麟(1970—),男,副教授,主研方向为交通运输管理;杨彪(通信作者),硕士;景鹏,副教授。
  • 基金资助:
    教育部人文社会科学研究项目(11YJA630152);江苏省“六大人才高峰”项目(2015-JY-025)。

Research on Travel Mode Identification of University Students Based on IPOS-SVM

WU Linlin,YANG Biao,JING Peng   

  1. (School of Automotive and Traffic Engineering, Jiangsu University,Zhenjiang,Jiangsu 212013,China)
  • Received:2016-11-14 Online:2018-01-15 Published:2018-01-15

摘要: 依据在校大学生的出行特征,确定7种出行特征变量,选择大学生的常用6种出行方式(步行、自行车、电动车、校园公交、公交车和出租车)。利用改进粒子群优化支持向量机(IPSO-SVM)对选择的出行方式进行识别,使用IPSO来优化SVM的参数,给出大学生出行识别方法。实验结果表明,该方法平均识别精度为94.22%,在大学生出行方式识别精度方面优于BP神经网络、决策树、支持向量机和粒子群优化支持向量机。

关键词: 支持向量机, 改进粒子群, 特征变量, 出行方式, 智能手机

Abstract: The specific practices of this model are that:firstly,seven feature variables are selected for travel mode detection based on the travel characteristics of university students;afterwards,six travel modes (walk,bicycle,electric bicycle,campus bus,bus and taxi) university students selected commonly are selected;finally,IPSO-SVM is used to identify six selected travel modes.This model is using IPSO to optimize SVM parameters,and a travel mode identification method of university students is proposed.Experimental result shows that the average detection accuracy of the proposed method is 94.22%,higher than that of BP neural networks,the decision trees,support vector machine and particle swarm optimization-support vector machine.

Key words: Support Vector Machine(SVM), improved particle swarm, characteristic variable, travel mode, smartphone

中图分类号: