参考文献
[1]WHALEN K E,PáEZ A,CARRASCO J A.Mode Choice of University Students Commuting to School and the Role of Active Travel [J].Journal of Transport Geography,2013,31(6):132-142.
[2]CHRISTIAN A K,THOMAS F.A Multi-level Approach to Travel Mode Choice—How Person Characteristics and Situation Specific Aspects Determine Car Use in a Student Sample[J].Transportation Research Part F Traffic Psychology & Behaviour,2011,14(4):261-277.
[3]张治华.基于GPS轨迹的出行信息提取研究[D].上海:华东师范大学,2010.
[4]ZHOU J,GOLLEDGE R.Real-time Tracking of Activity Scheduling/schedule Execution Within a Unified Data Collection Framework[J].University of California Transportation Center Working Papers,2004,41(5):444-463.
[5]ZHENG Yu,LIU Like,WANG Longhao,et al.Learning Transportation Mode From Raw GPS Data for Geographic Applications on the Web[C]//Proceedings of International Conference on World Wide Web.Washington D.C.,USA:IEEE Press,2008:247-256.
[6]REDDY S,MUN M,BURKE J,et al.Using Mobile Phones to Determine Transportation Modes[J].ACM Transactions on Sensor Networks,2010,6(2):662-701.
[7]ZHANG L,DALYOT S,EGGERT D,et al.Multi-stage Approach to Travel-mode Segmentation and Classification of GPS Traces[J].ISPRS——International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2012,25(4):87-93.
[8]NITSCHE P,WIDHALM P,BREUSS S,et al.Supporting Large-scale Travel Surveys with Smartphones——A Practical Approach[J].Transportation Research Part C:Emerging Technologies,2014,43:212-221.
[9]XIAO Guangnian,JUAN Zhicai,GAO Jingxian.Travel Mode Detection Based on Neural Networks and Particle Swarm Optimization [J].Information,2015,6(3):522-535.
[10]XIAO Guangnian,JUAN Zhicai,ZHANG Chunqin.Travel Mode Detection Based on GPS Track Data and Bayesian Networks[J].Computers,Environment and Urban Systems,2015,54:14-22.
[11]李喆,柏丛,孙健,等.基于PSO-SVM的出行方式识别研究[J].计算机应用研究,2016(12):3527-3529.
[12]王晓霞,王涛,谷根代.基于改进粒子群优化的神经网络及应用[J].华北电力大学学报,2009,36(5):99-102.
[13]王建国,张文兴.支持向量机建模及其智能优化[M].北京:清华大学出版社,2015.
[14]安旭,张树东.基于支持向量机的模糊特征分类算法研究[J].计算机工程,2017,43(1):237-240,246.
[15]王园.基于SVM_AdaBoost模型的上市公司退市预警研究[D].广州:华南理工大学,2013.
[16]胡程磊.数据驱动的建筑电能耗预测方法研究[D].镇江:江苏大学,2016.
[17]BROACH J,MCNEIL N W,DILL J.Travel Mode Imputation Using GPS and Accelerometer Data from a Multi-day Travel Survey[C]//Proceedings of Transportation Research Board the 93rd Annual Meeting.Washington,D.C.,USA:[s.n.]2014:256-268.
[18]BOLBOL A,CHENG T,TSAPAKIS I,et al.Inferring Hybrid Transportation Modes from Sparse GPS Data Using a Moving Window SVM Classification[J].Computers Environment & Urban Systems,2012,36(6):526-537.
编辑刘冰 |