作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 人工智能及识别技术 • 上一篇    下一篇

基于知识图谱表示学习的协同过滤推荐算法

吴玺煜 1,陈启买 1,刘海 1,贺超波 2   

  1. (1.华南师范大学 计算机学院,广州 510631; 2.仲恺农业工程学院 信息科学与技术学院,广州 510225)
  • 收稿日期:2016-12-30 出版日期:2018-02-15 发布日期:2018-02-15
  • 作者简介:吴玺煜(1993—),男,硕士研究生,主研方向为推荐系统、本体理论;陈启买,教授;刘海(通信作者)、贺超波,副教授、博士。
  • 基金资助:
    广东省自然科学基金(2016A030313441);广东省科技计划项目(2015B010129009,2016A030303058,2016A090922008,2015A 020209178);广东省高性能计算重点实验室开放课题(T191527)。

Collaborative Filtering Recommendation Algorithm Based on Representation Learning of Knowledge Graph

WU Xiyu   1,CHEN Qimai   1,LIU Ha i  1,HE Chaobo   2   

  1. (1.School of Computer,South China Normal University,Guangzhou 510631,China;2.School of Information Science and Technology,Zhongkai University of Agriculture and Engineering,Guangzhou 510225,China)
  • Received:2016-12-30 Online:2018-02-15 Published:2018-02-15

摘要: 针对协同过滤算法仅使用物品-用户评分矩阵而未考虑语义的问题,提出一种协同过滤推荐算法。使用知识图谱表示学习方法,将业界已有的语义数据嵌入一个低维的语义空间中。通过计算物品之间的语义相似性,将物品自身的语义信息融入协同过滤推荐。算法弥补了协同过滤算法没有考虑物品本身内涵知识的缺陷,在语义层面上增强了协同过滤推荐的效果。实验结果表明,该算法能够有效地提升协同过滤推荐的准确率、召回率和F值。

关键词: 协同过滤, 知识图谱, 表示学习, 语义相似性, 推荐系统

Abstract: To solve the problem that collaborative filtering algorithm only uses the items-users rating matrix and does not consider semantic,a collaborative filtering recommendation algorithm is presented.Using the knowledge map to represent the learning method,this method embeds the existing semantic data into a low-dimensional semantic space.It integrates the semantic information of items into the collaborative filtering recommendation by calculating the semantic similarity between items.The shortcoming of collaborative filtering algorithm which does not consider the semantic information of items is overcome,and therefore the effect of collaborative filtering recommendation is improved on the semantic level.Experimental results show that the proposed algorithm can get higher values on precision,recall and F-measure for collaborative filtering recommendation.

Key words: collaborative filtering, knowledge graph, representation learning, semantic similarity, recommendation system

中图分类号: