[1] MASI I, WU Y, HASSNER T, et al.Deep face recognition:a survey[C]//Proceedings of the 31st Conference on Graphics, Patterns and Images.Washington D.C., USA:IEEE Press, 2018:471-478. [2] CHENG Y, JIANG B, JIA K B.A deep structure for facial expression recognition under partial occlusion[C]//Proceedings of the 10th International Conference on Intelligent Information Hiding and Multimedia Signal Processing.Washington D.C., USA:IEEE Press, 2014:211-214. [3] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Washington D.C., USA:IEEE Press, 2016:770-778. [4] ZHAO K, XU J Y, CHENG M M.RegularFace:deep face recognition via exclusive regularization[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:1136-1144. [5] CHEN Y, LIU S.Deep partial occlusion facial expression recognition via improved CNN[C]//Proceedings of the Advances in Visual Computing.Berlin, Germany:Springer, 2020:451-462. [6] ZHANG T P, TANG Y Y, FANG B, et al.Face recognition under varying illumination using gradientfaces[J].IEEE Transactions on Image Processing, 2009, 18(11):2599-2606. [7] ZHANG W C, SHAN S G, WEN G, et al.Local gabor binary pattern histogram sequence:a novel non-statistical model for face representation and recognition[C]//Proceedings of the 10th IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2005:786-791. [8] 李小薪, 梁荣华.有遮挡人脸识别综述:从子空间回归到深度学习[J].计算机学报, 2018, 41(1):177-207. LI X X, LIANG R H.A review for face recognition with occlusion:from subspace regression to deep learning[J].Chinese Journal of Computers, 2018, 41(1):177-207.(in Chinese) [9] CEN F, WANG G H.Dictionary representation of deep features for occlusion-robust face recognition[J].IEEE Access, 2019, 7:26595-26605. [10] LI Y, LIU S, YANG J, et al.Generative face completion[EB/OL].[2021-02-10].https://www.researchgate.net/publication/316272513_Generative_Face_Completion. [11] 张雪菲, 程乐超, 白升利, 等.基于变分自编码器的人脸图像修复[J].计算机辅助设计与图形学学报, 2020, 32(3):401-409. ZHANG X F, CHENG L C, BAI S L, et al.Face image inpainting via variational autoencoder[J].Journal of Computer-Aided Design & Computer Graphics, 2020, 32(3):401-409.(in Chinese) [12] 曹真, 杨云, 齐勇, 等.基于多损失约束与注意力块的图像修复方法[J].陕西科技大学学报, 2020, 38(3):158-165. CAO Z, YANG Y, QI Y, et al.Image inpainting method based on multi-loss constraint and attention block[J].Journal of Shaanxi University of Science & Technology, 2020, 38(3):158-165.(in Chinese) [13] ZHANG S, HE R, SUN Z N, et al.DeMeshNet:blind face inpainting for deep MeshFace verification[J].IEEE Transactions on Information Forensics and Security, 2018, 13(3):637-647. [14] 陈俊周, 王娟, 龚勋.基于级联生成对抗网络的人脸图像修复[J].电子科技大学学报, 2019, 48(6):910-917. CHEN J Z, WANG J, GONG X.Face image inpainting using cascaded generative adversarial networks[J].Journal of University of Electronic Science and Technology of China, 2019, 48(6):910-917.(in Chinese) [15] 曾阳艳, 叶柏龙.基于支持向量机的人脸识别系统的研究[J].计算机工程与应用, 2008, 44(15):182-184. ZENG Y Y, YE B L.Face recognition based on support vector machines[J].Computer Engineering and Applications, 2008, 44(15):182-184.(in Chinese) [16] 冯小荣, 惠康华, 柳振东.基于卷积特征和贝叶斯分类器的人脸识别[J].智能系统学报, 2018, 13(5):769-775. FENG X R, HUI K H, LIU Z D.Face recognition based on convolution feature and Bayes classifier[J].CAAI Transactions on Intelligent Systems, 2018, 13(5):769-775.(in Chinese) [17] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6):84-90. [18] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2014:2672-2680. [19] LATA K, DAVE M, NISHANTH K N.Image-to-image translation using generative adversarial network[C]//Proceedings of the 3rd International Conference on Electronics, Communication and Aerospace Technology.Washington D.C., USA:IEEE Press, 2019:186-189. [20] WEN Y D, ZHANG K P, LI Z F, et al.A discriminative feature learning approach for deep face recognition[C]//Proceedings of Conference on Computer Vision.Berlin, Germany:Springer, 2016:499-515. [21] MIKOLOV T, KOMBRINK S, BURGET L, et al.Extensions of recurrent neural network language model[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2011:5528-5531. [22] LIU W Y, WEN Y D, YU Z D, et al.SphereFace:deep hypersphere embedding for face recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6738-6746. [23] WANG H, WANG Y T, ZHOU Z, et al.CosFace:large margin cosine loss for deep face recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:5265-5274. [24] DENG J K, GUO J, XUE N N, et al.ArcFace:additive angular margin loss for deep face recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:4685-4694. [25] YI D, LEI Z, LIAO S C, et al.Learning face representation from scratch[EB/OL].[2021-02-10].https://arxiv.org/abs/1411.7923v1. [26] ELMAHMUDI A, UGAIL H.Deep face recognition using imperfect facial data[J].Future Generation Computer Systems, 2019, 99:213-225. |