作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (12): 184-193. doi: 10.19678/j.issn.1000-3428.0069052

• 移动互联与通信技术 • 上一篇    下一篇

基于云边协同的可靠服务功能链部署算法

宋艳蕊1, 庄雷1,*(), 徐泽汐1, 冯旭2, 莫文帅1   

  1. 1. 郑州大学计算机与人工智能学院, 河南 郑州 450000
    2. 郑州大学网络空间安全学院, 河南 郑州 450000
  • 收稿日期:2023-12-19 出版日期:2024-12-15 发布日期:2024-04-26
  • 通讯作者: 庄雷
  • 基金资助:
    河南省重大科技专项(221100210900-03)

Reliable Service Function Chain Deployment Algorithm Based on Edge-Cloud Collaboration

SONG Yanrui1, ZHUANG Lei1,*(), XU Zexi1, FENG Xu2, MO Wenshuai1   

  1. 1. School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450000, Henan, China
    2. School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450000, Henan, China
  • Received:2023-12-19 Online:2024-12-15 Published:2024-04-26
  • Contact: ZHUANG Lei

摘要:

在应对车联网(IoV)系统中请求类型多样化及数据海量化挑战时, 软件定义网络(SDN)和网络功能虚拟化(NFV)技术支持的云边协同架构已成为服务功能链(SFC)部署的有效手段。然而, IoV中无处不在的电磁干扰使组成SFC的虚拟网络功能(VNF)极易受损, 且以软件形式存在的VNF本身存在一定故障概率, 这使SFC部署过程的可靠性受到了威胁。为了在最小化成本前提下实现云边协同架构中车载请求的可靠部署, 构建一个基于SDN/NFV的可靠云边协同车载计算架构, 采用集中式训练-分布式推断方式训练部署模型。设计基于可靠成本效益比的可靠性增强算法SFC-RA, 通过创建与VNF具有相同功能的备份虚拟网络功能(BVNF)增强SFC的可靠性。提出一种基于策略梯度(PG)算法的在线SFC可靠部署算法PG_RA, 采用序列到序列模型作为学习代理, 以保障在满足资源约束的前提下能够提供满足用户需求的高可靠低成本服务。仿真结果表明, 相对于其他冗余方式和部署算法, SFC-RA算法能够降低2.78~6.33个单位的冗余成本, PG_RA算法能够平均提高12.88个百分点的可靠性水平及降低约6.7%的平均时延。

关键词: 车联网, 云边协同, 可靠性, 服务功能链, 深度强化学习, 网络功能虚拟化

Abstract:

In response to the challenges of diverse requests and massive data in the Internet of Vehicle (IoV), the edge-cloud collaboration architecture supported by Software Defined Networking (SDN) and Network Function Virtualization (NFV) technologies has emerged as an effective solution to the Service Function Chain (SFC) deployment problem. However, ubiquitous electromagnetic interference renders the Virtual Network Functions (VNFs) that comprise the SFC highly vulnerable within the IoV. As VNFs are software-based, they are susceptible to failure, which compromises the reliability of the SFC deployment process. To ensure reliable deployment of vehicle requests at minimal cost, a reliable edge-cloud collaboration vehicle-computing architecture is built based on SDN/NFV, which trains deployment models using centralized training and distributed inference. Furthermore, the SFC reliability enhancement algorithm SFC-RA is designed to enhance SFC reliability by introducing a Backup Virtual Network Function (BVNF) that mirrors the functionality of the original VNF. Finally, an online SFC reliable deployment algorithm PG_RA is proposed based on the Policy Gradient (PG) approach, and a sequence-to-sequence model is employed as an agent to provide highly reliable and cost-efficient services while adhering to resource constraints. Simulation results demonstrate that, compared to other redundancy methods and deployment algorithms, the SFC-RA algorithm reduces the redundancy cost by 2.78 to 6.33 units, and the PG_RA algorithm enhances reliability by an average of 12.88 percentage points, and decreases average latency by approximately 6.7%.

Key words: Internet of Vehicle (IoV), edge-cloud collaboration, reliability, Service Function Chain (SFC), Deep Reinforcement Learning (DRL), Network Function Virtualization (NFV)