[1] FAN J, JIANG Y C, LIU Y Z, et al. Interpretable MOOC recommendation:a multi-attention network for personalized learning behavior analysis[J]. Internet Research, 2022, 32(2):588-605. [2] WANG W, GUO L H, HE L, et al. Effects of social-interactive engagement on the dropout ratio in online learning:insights from MOOC[J]. Behaviour & Information Technology, 2019, 38(6):621-636. [3] PANIGRAHI R, SRIVASTAVA P R, SHARMA D. Online learning:adoption, continuance, and learning outcome-a review of literature[J]. International Journal of Information Management, 2018, 43:1-14. [4] KHALID A, LUNDQVIST K, YATES A. A literature review of implemented recommendation techniques used in massive open online courses[J]. Expert Systems with Applications, 2022, 187:115926. [5] UDDIN I, IMRAN A S, MUHAMMAD K, et al. A systematic mapping review on MOOC recommender systems[J]. IEEE Access, 2021, 9:118379-118405. [6] 王曙燕, 郭睿涵, 孙家泽. 基于图对比学习的MOOC推荐方法[J]. 计算机工程, 2023, 49(1):57-64, 72. WANG S Y, GUO R H, SUN J Z. Recommendation method for MOOC based on graph contrastive learning[J]. Computer Engineering, 2023, 49(1):57-64, 72.(in Chinese) [7] AHER S B, LOBO L M R J. Combination of machine learning algorithms for recommendation of courses in E-learning system based on historical data[J]. Knowledge-Based Systems, 2013, 51:1-14. [8] PANG Y X, JIN Y Y, ZHANG Y, et al. Collaborative filtering recommendation for MOOC application[J]. Computer Applications in Engineering Education, 2017, 25(1):120-128. [9] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[C]//Proceedings of International Conference on Learning Representations. Washington D. C., USA:IEEE Press, 2016:1-10. [10] LIN Y G, FENG S B, LIN F, et al. Adaptive course recommendation in MOOCs[J]. Knowledge-Based Systems, 2021, 224:107085. [11] WANG X H, MA W Y, GUO L, et al. HGNN:hyperedge-based graph neural network for MOOC course recommendation[J]. Information Processing & Management, 2022, 59(3):102938. [12] ZHANG H, HUANG T, LV Z H, et al. MOOCRC:a highly accurate resource recommendation model for use in MOOC environments[J]. Mobile Networks and Applications, 2019, 24(1):34-46. [13] XIE Y, YU B, LV S Z, et al. A survey on heterogeneous network representation learning[J]. Pattern Recognition, 2021, 116:107936. [14] CAI D S, QIAN S S, FANG Q, et al. User cold-start recommendation via inductive heterogeneous graph neural network[J]. ACM Transactions on Information Systems, 2023, 41(3):1-27. [15] HU L M, LI C, SHI C, et al. Graph neural news recommendation with long-term and short-term interest modeling[J]. Information Processing & Management, 2020, 57(2):102142. [16] YANG K, ZHU J H, GUO X. POI neural-Rec model via graph embedding representation[J]. Tsinghua Science and Technology, 2021, 26(2):208-218. [17] GUO J, ZHOU Y, ZHANG P, et al. Trust-aware recommendation based on heterogeneous multi-relational graphs fusion[J]. Information Fusion, 2021, 74:87-95. [18] SHI C, HU B B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2):357-370. [19] LIU Z W, WAN M T, GUO S, et al. BasConv:aggregating heterogeneous interactions for basket recommendation with graph convolutional neural network[C]//Proceedings of 2020 SIAM International Conference on Data Mining. Philadelphia, USA:Society for Industrial and Applied Mathematics, 2020:64-72. [20] LI Z F, LIU H, ZHANG Z L, et al. Learning knowledge graph embedding with heterogeneous relation attention networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8):3961-3973. [21] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York, USA:ACM Press, 2001:285-295. [22] LINDEN G, SMITH B, YORK J. Amazon.com recommendations:item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1):76-80. [23] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. New York, USA:ACM Press, 2009:452-461. [24] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York, USA:ACM Press, 2010:811-820. [25] WU S, TANG Y Y, ZHU Y Q, et al. Session-based recommendation with graph neural networks[C]//Proceedings of the 33th AAAI Conference on Artificial Intelligence. Honolulu, USA:AAAI Press, 2019:346-353. [26] HE X N, DENG K, WANG X, et al. LightGCN:simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2020:639-648. |