1 |
TABESH A R, STAUB-FRENCH S. Case study of constructability reasoning in MEP coordination[C]//Proceedings of Construction Research Congress. Honolulu, USA: American Society of Civil Engineers, 2005: 1-10.
|
2 |
STAUB-FRENCH S, KHANZODE A. 3D and 4D modeling for design and construction coordination: issues and lessons learned. Electronic Journal of Information Technology in Construction, 2007, 12, 381- 407.
|
3 |
MANGAL M, CHENG J C P, WANG Q. Automated clash resolution of steel rebar in RC beam-column joints using BIM and GA[C]//Proceedings of International Symposium on Automation and Robotics in Construction and Mining. Honolulu, USA: American Society of Civil Engineers, 2017: 37-43.
|
4 |
李佐军, 刘世斌, 都书巍, 等. BIM技术在钢筋工程方面的应用. 建筑技术开发, 2019, 46 (20): 99- 100.
URL
|
|
LI Z J, LIU S B, DU S W, et al. Application of BIM technology in reinforcement engineering. Building Technology Development, 2019, 46 (20): 99- 100.
URL
|
5 |
AZHAR S, BROWN J. BIM for sustainability analyses. International Journal of Construction Education and Research, 2009, 5 (4): 276- 292.
doi: 10.1080/15578770903355657
|
6 |
LI M K, LIU Y H, WONG B C L, et al. Automated structural design optimization of steel reinforcement using graph neural network and exploratory genetic algorithms. Automation in Construction, 2023, 146, 104677.
doi: 10.1016/j.autcon.2022.104677
|
7 |
LIU P K, QI H T, LIU J P, et al. Automated clash resolution for reinforcement steel design in precast concrete wall panels via generative adversarial network and reinforcement learning. Advanced Engineering Informatics, 2023, 58, 102131.
doi: 10.1016/j.aei.2023.102131
|
8 |
LECUN Y, BENGIO Y, HINTON G. Deep learning. Nature, 2015, 521 (7553): 436- 444.
doi: 10.1038/nature14539
|
9 |
SCHMIDHUBER J. Deep learning in neural networks: an overview. Neural Networks, 2015, 61, 85- 117.
doi: 10.1016/j.neunet.2014.09.003
|
10 |
PARK M G, JEON J H, LEE M C. Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing[C]//Proceedings of IEEE International Symposium on Industrial Electronics Proceedings. Washington D. C., USA: IEEE Press, 2001: 1257-1266.
|
11 |
YANG L, QI J, XIAO J. A literature review of USA 3d path planning[C]//Proceedings of the 11th World Congress on Intelligent Control and Automation. Shenyang, China: [s. n. ], 2015: 458-466
|
12 |
WHITLEY D. An overview of evolutionary algorithms: practical issues and common pitfalls. Information and Software Technology, 2001, 43 (14): 817- 831.
doi: 10.1016/S0950-5849(01)00188-4
|
13 |
BÄCK T, SCHWEFEL H P. An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1993, 1 (1): 1- 23.
doi: 10.1162/evco.1993.1.1.1
|
14 |
LIU J P, LIU P K, FENG L, et al. Automated clash resolution for reinforcement steel design in concrete frames via Q-learning and building information modeling. Automation in Construction, 2020, 112, 103062.
doi: 10.1016/j.autcon.2019.103062
|
15 |
CLIFTON J, LABER E. Q-learning: theory and applications. Annual Review of Statistics and Its Application, 2020, 7, 279- 301.
doi: 10.1146/annurev-statistics-031219-041220
|
16 |
LIU J P, XU C R, WU Z, et al. Intelligent rebar layout in RC building frames using artificial potential field. Automation in Construction, 2020, 114, 103172.
doi: 10.1016/j.autcon.2020.103172
|
17 |
LIU J P, LI S, XU C R, et al. Automatic and optimal rebar layout in reinforced concrete structure by decomposed optimization algorithms. Automation in Construction, 2021, 126, 103655.
doi: 10.1016/j.autcon.2021.103655
|
18 |
CAMACHO E F, BORDONS C. Model predictive control[M]. London, UK: Springer, 2007.
|
19 |
GARCÍA C E, PRETT D M, MORARI M. Model predictive control: theory and practice-a survey. Automatica, 1989, 25 (3): 335- 348.
doi: 10.1016/0005-1098(89)90002-2
|
20 |
CAMPONOGARA E, JIA D, KROGH B H, et al. Distributed model predictive control. IEEE Control Systems, 2002, 22 (1): 44- 52.
doi: 10.1109/37.980246
|
21 |
CHEN Y Q, WANG Z M. Formation control: a review and a new consideration[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE Press, 2005: 453-464.
|
22 |
伍锡如, 邢梦媛. 分数阶多机器人的领航-跟随型环形编队控制. 控制理论与应用, 2021, 38 (1): 103- 109.
URL
|
|
WU X R, XING M Y. Annular formation control of the leader-follower multi-robot based on fractional order. Control Theory & Applications, 2021, 38 (1): 103- 109.
URL
|
23 |
GARRIDO S, MORENO L, GÓMEZ J V, et al. General path planning methodology for leader-follower robot formations. International Journal of Advanced Robotic Systems, 2013, 10 (1): 64.
doi: 10.5772/53999
|
24 |
程适, 王锐, 伍国华, 等. 群体智能优化算法. 郑州大学学报(工学版), 2018, 39 (6): 1- 2.
URL
|
|
CHENG S, WANG R, WU G H, et al. Swarm intelligence optimization algorithms. Journal of Zhengzhou University (Engineering Science), 2018, 39 (6): 1- 2.
URL
|
25 |
MARTÍNEZ-MUÑOZ D, GARCÍA J, MARTÍ J V, et al. Discrete swarm intelligence optimization algorithms applied to steel—concrete composite bridges. Engineering Structures, 2022, 266, 114607.
doi: 10.1016/j.engstruct.2022.114607
|
26 |
ZUO Z Q, YANG X, ZHANG Z C, et al. Lane-associated MPC path planning for autonomous vehicles[C]//Proceedings of 2019 Chinese Control Conference. Washington D. C., USA: IEEE Press, 2019: 6627-6632.
|
27 |
ROBERGE V, TARBOUCHI M, LABONTE G. Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Transactions on Industrial Informatics, 2013, 9 (1): 132- 141.
doi: 10.1109/TII.2012.2198665
|
28 |
STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341- 359.
doi: 10.1023/A:1008202821328
|
29 |
刘波, 王凌, 金以慧. 差分进化算法研究进展. 控制与决策, 2007, 22 (7): 721- 729.
URL
|
|
LIU B, WANG L, JIN Y H. Advances in differential evolution. Control and Decision, 2007, 22 (7): 721- 729.
URL
|