1 |
TIAN C W, FEI L K, ZHENG W X, et al. Deep learning on image denoising: an overview. Neural Networks, 2020, 131, 251- 275.
doi: 10.1016/j.neunet.2020.07.025
|
2 |
GOYAL B, DOGRA A, AGRAWAL S, et al. Image denoising review: from classical to state-of-the-art approaches. Information Fusion, 2020, 55, 220- 244.
doi: 10.1016/j.inffus.2019.09.003
|
3 |
BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2005: 60-65.
|
4 |
DONOHO D L. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 1995, 41(3): 613- 627.
doi: 10.1109/18.382009
|
5 |
DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994, 81(3): 425- 455.
doi: 10.1093/biomet/81.3.425
|
6 |
TIAN C W, ZHENG M H, ZUO W M, et al. Multi-stage image denoising with the wavelet transform. Pattern Recognition, 2023, 134, 109050.
doi: 10.1016/j.patcog.2022.109050
|
7 |
ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 2006, 15(12): 3736- 3745.
doi: 10.1109/TIP.2006.881969
|
8 |
CHEN R, PU D, TONG Y, et al. Image-denoising algorithm based on improved K-singular value decomposition and atom optimization. CAAI Transactions on Intelligence Technology, 2022, 7(1): 117- 127.
doi: 10.1049/cit2.12044
|
9 |
|
10 |
WEN Y, GUO Z C, YAO W J, et al. Hybrid BM3D and PDE filtering for non-parametric single image denoising. Signal Processing, 2021, 184, 108049.
doi: 10.1016/j.sigpro.2021.108049
|
11 |
ZHANG Q, XIAO J Y, TIAN C W, et al. A robust deformed Convolutional Neural Network (CNN) for image denoising. CAAI Transactions on Intelligence Technology, 2023, 8(2): 331- 342.
doi: 10.1049/cit2.12110
|
12 |
ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Transactions on Image Processing, 2017, 26(7): 3142- 3155.
doi: 10.1109/TIP.2017.2662206
|
13 |
ZHANG K, ZUO W M, GU S H, et al. Learning deep CNN denoiser prior for image restoration[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 3929-3938.
|
14 |
ZHANG K, ZUO W M, ZHANG L. FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Transactions on Image Processing, 2018, 27(9): 4608- 4622.
doi: 10.1109/TIP.2018.2839891
|
15 |
YUN S, CHOI J, YOO Y, et al. Action-decision networks for visual tracking with deep reinforcement learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2711-2720.
|
16 |
|
17 |
FAN C M, LIU T J, LIU K H. SUNet: swin transformer U-Net for image denoising[C]//Proceedings of IEEE International Symposium on Circuits and Systems. Washington D. C., USA: IEEE Press, 2022: 2333-2337.
|
18 |
LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 4681-4690.
|
19 |
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
21 |
张文秀, 朱振才, 张永合, 等. 基于残差块和注意力机制的细胞图像分割方法. 光学学报, 2020, 40(17): 76- 83.
URL
|
|
ZHANG W X, ZHU Z C, ZHANG Y H, et al. Cell image segmentation method based on residual block and attention mechanism. Acta Optica Sinica, 2020, 40(17): 76- 83.
URL
|
22 |
MAHDAOUI A E, OUAHABI A, MOULAY M S. Image denoising using a compressive sensing approach based on regularization constraints. Sensors (Basel, Switzerland), 2022, 22(6): 2199.
doi: 10.3390/s22062199
|
23 |
|
24 |
GURROLA-RAMOS J, DALMAU O, ALARCON T E. A residual dense U-Net neural network for image denoising. IEEE Access, 2021, 9, 31742- 31754.
doi: 10.1109/ACCESS.2021.3061062
|
25 |
CHEN G Y, ZHU F Y, HENG P A. An efficient statistical method for image noise level estimation[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 477-485.
|
26 |
GU S H, ZHANG L, ZUO W M, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 2862-2869.
|
27 |
ZORAN D, WEISS Y. From learning models of natural image patches to whole image restoration[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2011: 479-486.
|
28 |
GUO S, YAN Z F, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 1712-1722.
|