1 |
ZHENG L, YANG Y, TIAN Q. SIFT meets CNN: a decade survey of instance retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(5): 1224- 1244.
doi: 10.1109/TPAMI.2017.2709749
|
2 |
KARANAM S, GOU M, WU Z, et al. A systematic evaluation and benchmark for person re-identification: features, metrics, and datasets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(3): 523- 536.
doi: 10.1109/TPAMI.2018.2807450
|
3 |
LENG Q M, YE M, TIAN Q. A survey of open-world person re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(4): 1092- 1108.
doi: 10.1109/TCSVT.2019.2898940
|
4 |
罗浩, 姜伟, 范星, 等. 基于深度学习的行人重识别研究进展. 自动化学报, 2019, 45(11): 2032- 2049.
|
|
LUO H, JIANG W, FAN X, et al. A survey on deep learning based person re-identification. Acta Automatica Sinica, 2019, 45(11): 2032- 2049.
|
5 |
GU X Q, CHANG H, MA B P, et al. Appearance-preserving 3D convolution for video-based person re-identification[EB/OL]. [2023-08-05]. https://arxiv.org/abs/2007.08434.
|
6 |
郭业才, 沈宇慧. 融合交互性特征信息的余弦度量行人重识别. 计算机工程与设计, 2023, 44(11): 3395- 3401.
|
|
GUO Y C, SHEN Y H. Person re-identification with cosine metric fusing interactive feature information. Computer Engineering and Design, 2023, 44(11): 3395- 3401.
|
7 |
SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[EB/OL]. [2023-08-05]. https://arxiv.org/abs/1711.09349.
|
8 |
HUANG Y, XU J S, WU Q, et al. Beyond scalar neuron: adopting vector-neuron capsules for long-term person re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(10): 3459- 3471.
doi: 10.1109/TCSVT.2019.2948093
|
9 |
SHU X J, WANG X, ZANG X H, et al. Large-scale spatio-temporal person re-identification: algorithms and benchmark. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(7): 4390- 4403.
doi: 10.1109/TCSVT.2021.3128214
|
10 |
张鹏, 张晓林, 包永堂, 等. 换装行人重识别研究进展. 中国图象图形学报, 2023, 28(5): 1242- 1264.
|
|
ZHANG P, ZHANG X L, BAO Y T, et al. Cloth-changing person re-identification: a summary. Journal of Image and Graphics, 2023, 28(5): 1242- 1264.
|
11 |
CHANG X B, HOSPEDALES T M, XIANG T. Multi-level factorisation net for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 2109-2118.
|
12 |
WAN F B, WU Y, QIAN X L, et al. When person re-identification meets changing clothes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 3620-3628.
|
13 |
YU S J, LI S H, CHEN D P, et al. COCAS: a large-scale clothes changing person dataset for re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 3400-3409.
|
14 |
FAN L J, LI T H, FANG R Y, et al. Learning longterm representations for person re-identification using radio signals[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 1-2.
|
15 |
WANG Y X, DU B W, SHEN Y R, et al. EV-gait: event-based robust gait recognition using dynamic vision sensors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 6358-6367.
|
16 |
FAN C, PENG Y J, CAO C S, et al. GaitPart: temporal part-based model for gait recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 14213-14221.
|
17 |
JIN X, HE T Y, ZHENG K C, et al. Cloth-changing person re-identification from a single image with gait prediction and regularization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 14258-14267.
|
18 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778.
|
19 |
GU X Q, CHANG H, MA B P, et al. Clothes-changing person re-identification with RGB modality only[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 1050-1059.
|
20 |
SHU X J, LI G, WANG X, et al. Semantic-guided pixel sampling for cloth-changing person re-identification. IEEE Signal Processing Letters, 2021, 28, 1365- 1369.
doi: 10.1109/LSP.2021.3091924
|
21 |
HUANG Y, WU Q, XU J S, et al. Clothing status awareness for long-term person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 11875-11884.
|
22 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011- 2023.
doi: 10.1109/TPAMI.2019.2913372
|
23 |
YANG Q, WU A, ZHENG W S. Person re-identification by contour sketch under moderate clothing change. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(6): 2029- 2046.
doi: 10.1109/TPAMI.2019.2960509
|
24 |
DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2009: 248-255.
|
25 |
LI W, ZHU X T, GONG S G. Harmonious attention network for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 2285-2294.
|
26 |
QIAN X L, FU Y W, JIANG Y G, et al. Multi-scale deep learning architectures for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2017: 5409-5418.
|
27 |
KOSTINGER M, HIRZER M, WOHLHART P, et al. Large scale metric learning from equivalence constraints[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2012: 2288-2295.
|
28 |
LIAO S C, HU Y, ZHU X Y, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 2197-2206.
|
29 |
CHEN J X, JIANG X Y, WANG F D, et al. Learning 3D shape feature for texture-insensitive person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 8142-8151.
|
30 |
HONG P X, WU T, WU A C, et al. Fine-grained shape-appearance mutual learning for cloth-changing person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 10508-10517.
|
31 |
ZHANG Q L, YANG Y B. SA-Net: Shuffle attention for deep convolutional neural networks[C]//Proceedings of the ICASSP IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D.C., USA: IEEE Press, 2021: 2235-2239.
|
32 |
LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. [2023-08-05]. https://arxiv.org/abs/2112.05561.
|
33 |
|
34 |
MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Washington D.C., USA: IEEE Press, 2021: 3138-3147.
|
35 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 11534-11542.
|