| 1 |  XU H,  YAN R. Research on sports action recognition system based on cluster regression and improved ISA deep network. Journal of Intelligent & Fuzzy Systems, 2020, 39(4): 5871- 5881. | 
																													
																						| 2 | 罗会兰, 王婵娟, 卢飞. 视频行为识别综述. 通信学报, 2018, 39(6): 169- 180. | 
																													
																						|  |  LUO H L,  WANG C J,  LU F. Survey of video behavior recognition. Journal on Communications, 2018, 39(6): 169- 180. | 
																													
																						| 3 | 罗会兰, 童康, 孔繁胜. 基于深度学习的视频中人体动作识别进展综述. 电子学报, 2019, 47(5): 1162- 1173. | 
																													
																						|  |  LUO H L,  TONG K,  KONG F S. The progress of human action recognition in videos based on deep learning: a review. Acta Electronica Sinica, 2019, 47(5): 1162- 1173. | 
																													
																						| 4 |  LIU X. Sports deep learning method based on cognitive human behavior recognition. Computational Intelligence and Neuroscience, 2022, 2022, 2913507. | 
																													
																						| 5 |  YAO G L,  LEI T,  ZHONG J D. A review of convolutional-neural-network-based action recognition. Pattern Recognition Letters, 2019, 118, 14- 22.  doi: 10.1016/j.patrec.2018.05.018
 | 
																													
																						| 6 |  ZHANG H B,  ZHANG Y X,  ZHONG B, et al. Acomprehensive survey of vision-based human action recognition methods. Sensors (Basel, Switzerland), 2019, 19(5): E1005.  doi: 10.3390/s19051005
 | 
																													
																						| 7 | 石跃祥, 朱茂清. 基于骨架动作识别的协作卷积Transformer网络. 电子与信息学报, 2023, 45(4): 1485- 1493. | 
																													
																						|  |  SHI Y X,  ZHU M Q. Collaborative convolutional Transformer network based on skeleton action recognition. Journal of Electronics & Information Technology, 2023, 45(4): 1485- 1493. | 
																													
																						| 8 | 赵俊男, 佘青山, 孟明, 等. 基于多流空间注意力图卷积SRU网络的骨架动作识别. 电子学报, 2022, 50(7): 1579- 1585. | 
																													
																						|  |  ZHAO J N,  SHE Q S,  MENG M, et al. Skeleton action recognition based on multi-stream spatial attention graph convolutional SRU network. Acta Electronica Sinica, 2022, 50(7): 1579- 1585. | 
																													
																						| 9 | 王辉, 宋佳豪, 丁铂栩, 等. 三角形网格序列表示的人体动作识别. 计算机辅助设计与图形学学报, 2022, 34(11): 1723- 1730. | 
																													
																						|  |  WANG H,  SONG J H,  DING B X, et al. Human action recognition of triangle mesh sequence representation. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(11): 1723- 1730. | 
																													
																						| 10 | 王洪雁, 袁海. 基于骨骼及表观特征融合的动作识别方法. 通信学报, 2022, 43(1): 138- 148. | 
																													
																						|  |  WANG H Y,  YUAN H. Action recognition method based on fusion of skeleton and apparent features. Journal on Communications, 2022, 43(1): 138- 148. | 
																													
																						| 11 | LIN J, GAN C, HAN S. TSM: temporal shift module for efficient video understanding[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 7083-7093. | 
																													
																						| 12 |  MAJUMDER S,  KEHTARNAVAZ N. Vision and inertial sensing fusion for human action recognition: a review. IEEE Sensors Journal, 2021, 21(3): 2454- 2467. | 
																													
																						| 13 |  WANG L,  HUYNH D Q,  KONIUSZ P. Acomparative review of recent kinect-based action recognition algorithms. IEEE Transactions on Image Processing, 2020, 29, 15- 28. | 
																													
																						| 14 |  | 
																													
																						| 15 |  LI Z Y,  GAVRILYUK K,  GAVVES E, et al. VideoLSTM convolves, attends and flows for action recognition. Computer Vision and Image Understanding, 2018, 166, 41- 50. | 
																													
																						| 16 | 胡正平, 刁鹏成, 张瑞雪, 等. 3D多支路聚合轻量网络视频行为识别算法研究. 电子学报, 2020, 48(7): 1261- 1268. | 
																													
																						|  |  HU Z P,  DIAO P C,  ZHANG R X, et al. Research on 3D multi-branch aggregated lightweight network video action recognition algorithm. Acta Electronica Sinica, 2020, 48(7): 1261- 1268. | 
																													
																						| 17 | 谢昭, 周义, 吴克伟, 等. 基于时空关注度LSTM的行为识别. 计算机学报, 2021, 44(2): 261- 274. | 
																													
																						|  |  XIE Z,  ZHOU Y,  WU K W, et al. Activity recognition based on spatial-temporal attention LSTM. Chinese Journal of Computers, 2021, 44(2): 261- 274. | 
																													
																						| 18 | 张小俊, 李辰政, 孙凌宇, 等. 基于改进3D卷积神经网络的行为识别. 计算机集成制造系统, 2019, 25(8): 2000- 2006. | 
																													
																						|  |  ZHANG X J,  LI C Z,  SUN L Y, et al. Behavior recognition method based on improved 3D convolutional neural network. Computer Integrated Manufacturing Systems, 2019, 25(8): 2000- 2006. | 
																													
																						| 19 | 于明理. 基于三维卷积神经网络的实时视频动作分类关键技术研究[D]. 北京: 北京邮电大学, 2019. | 
																													
																						|  | YU M L. Research on key technologies of real-time video action classification based on 3D convolutional neural network[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese) | 
																													
																						| 20 | 石祥滨, 李怡颖, 刘芳, 等. T-STAM: 基于双流时空注意力机制的端到端的动作识别模型. 计算机应用研究, 2021, 38(4): 1235-1239, 1276. | 
																													
																						|  |  SHI X B,  LI Y Y,  LIU F, et al. T-STAM: end-to-end action recognition model based on two-stream network with spatio-temporal attention mechanism. Application Research of Computers, 2021, 38(4): 1235-1239, 1276. | 
																													
																						| 21 | HARA K, KATAOKA H, SATOH Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6546-6555. | 
																													
																						| 22 |  | 
																													
																						| 23 | 范银行, 赵海峰, 张少杰. 基于3D卷积残差网络的人体动作识别算法. 计算机应用研究, 2020, 37(S2): 300-301, 304. | 
																													
																						|  |  FAN Y H,  ZHAO H F,  ZHANG S J. Human action recognition algorithm based on 3D convolutional residual network. Application Research of Computers, 2020, 37(S2): 300-301, 304. | 
																													
																						| 24 |  GAO Y J,  YANG F Y,  YU Q H, et al. Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Microchimica Acta, 2019, 186(3): 192. | 
																													
																						| 25 |  | 
																													
																						| 26 |  CAI J H,  HU J G. 3DRANs: 3D residual attention networks for action recognition. The Visual Computer, 2020, 36(6): 1261- 1270. | 
																													
																						| 27 | 高德勇, 康自兵, 王松, 等. 利用卷积块注意力机制识别人体动作的方法. 西安电子科技大学学报, 2022, 49(4): 144-155, 200. | 
																													
																						|  |  GAO D Y,  KANG Z B,  WANG S, et al. Method for recognizing human actions using convolutional block attention mechanism. Journal of Xidian University, 2022, 49(4): 144-155, 200. | 
																													
																						| 28 | LI Y, JI B, SHI X T, et al. TEA: temporal excitation and aggregation for action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 909-918. | 
																													
																						| 29 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141. | 
																													
																						| 30 |  | 
																													
																						| 31 | KUEHNE H, JHUANG H, GARROTE E, et al. HMDB: a large video database for human motion recognition[C]//Proceedings of the International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2011: 2556-2563. | 
																													
																						| 32 | WANG Z W, SHE Q, SMOLIC A. ACTION-net: multipath excitation for action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 13209-13218. | 
																													
																						| 33 |  ZHUANG D F,  JIANG M,  KONG J, et al. Spatiotemporal attention enhanced features fusion network for action recognition. International Journal of Machine Learning and Cybernetics, 2021, 12(3): 823- 841. | 
																													
																						| 34 | CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the Kinetics dataset[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 6299-6308. | 
																													
																						| 35 | ZHU J G, ZHU Z, ZOU W. End-to-end video-level representation learning for action recognition[C]//Proceedings of the 24th International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 645-650. | 
																													
																						| 36 | DIBA A L, FAYYAZ M, SHARMA V, et al. Temporal 3D ConvNets: new architecture and transfer learning for video classification[EB/OL]. [2023-08-05]. http://arxiv.org/abs/1711.08200v1 . | 
																													
																						| 37 | WANG L M, XIONG Y J, WANG Z, et al. Temporal segment networks: towards good practices for deep action recognition[EB/OL]. [2023-08-05]. https://arxiv.org/abs/1608.00859 . |