1 |
XU H, YAN R. Research on sports action recognition system based on cluster regression and improved ISA deep network. Journal of Intelligent & Fuzzy Systems, 2020, 39(4): 5871- 5881.
|
2 |
罗会兰, 王婵娟, 卢飞. 视频行为识别综述. 通信学报, 2018, 39(6): 169- 180.
|
|
LUO H L, WANG C J, LU F. Survey of video behavior recognition. Journal on Communications, 2018, 39(6): 169- 180.
|
3 |
罗会兰, 童康, 孔繁胜. 基于深度学习的视频中人体动作识别进展综述. 电子学报, 2019, 47(5): 1162- 1173.
|
|
LUO H L, TONG K, KONG F S. The progress of human action recognition in videos based on deep learning: a review. Acta Electronica Sinica, 2019, 47(5): 1162- 1173.
|
4 |
LIU X. Sports deep learning method based on cognitive human behavior recognition. Computational Intelligence and Neuroscience, 2022, 2022, 2913507.
|
5 |
YAO G L, LEI T, ZHONG J D. A review of convolutional-neural-network-based action recognition. Pattern Recognition Letters, 2019, 118, 14- 22.
doi: 10.1016/j.patrec.2018.05.018
|
6 |
ZHANG H B, ZHANG Y X, ZHONG B, et al. Acomprehensive survey of vision-based human action recognition methods. Sensors (Basel, Switzerland), 2019, 19(5): E1005.
doi: 10.3390/s19051005
|
7 |
石跃祥, 朱茂清. 基于骨架动作识别的协作卷积Transformer网络. 电子与信息学报, 2023, 45(4): 1485- 1493.
|
|
SHI Y X, ZHU M Q. Collaborative convolutional Transformer network based on skeleton action recognition. Journal of Electronics & Information Technology, 2023, 45(4): 1485- 1493.
|
8 |
赵俊男, 佘青山, 孟明, 等. 基于多流空间注意力图卷积SRU网络的骨架动作识别. 电子学报, 2022, 50(7): 1579- 1585.
|
|
ZHAO J N, SHE Q S, MENG M, et al. Skeleton action recognition based on multi-stream spatial attention graph convolutional SRU network. Acta Electronica Sinica, 2022, 50(7): 1579- 1585.
|
9 |
王辉, 宋佳豪, 丁铂栩, 等. 三角形网格序列表示的人体动作识别. 计算机辅助设计与图形学学报, 2022, 34(11): 1723- 1730.
|
|
WANG H, SONG J H, DING B X, et al. Human action recognition of triangle mesh sequence representation. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(11): 1723- 1730.
|
10 |
王洪雁, 袁海. 基于骨骼及表观特征融合的动作识别方法. 通信学报, 2022, 43(1): 138- 148.
|
|
WANG H Y, YUAN H. Action recognition method based on fusion of skeleton and apparent features. Journal on Communications, 2022, 43(1): 138- 148.
|
11 |
LIN J, GAN C, HAN S. TSM: temporal shift module for efficient video understanding[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 7083-7093.
|
12 |
MAJUMDER S, KEHTARNAVAZ N. Vision and inertial sensing fusion for human action recognition: a review. IEEE Sensors Journal, 2021, 21(3): 2454- 2467.
|
13 |
WANG L, HUYNH D Q, KONIUSZ P. Acomparative review of recent kinect-based action recognition algorithms. IEEE Transactions on Image Processing, 2020, 29, 15- 28.
|
14 |
|
15 |
LI Z Y, GAVRILYUK K, GAVVES E, et al. VideoLSTM convolves, attends and flows for action recognition. Computer Vision and Image Understanding, 2018, 166, 41- 50.
|
16 |
胡正平, 刁鹏成, 张瑞雪, 等. 3D多支路聚合轻量网络视频行为识别算法研究. 电子学报, 2020, 48(7): 1261- 1268.
|
|
HU Z P, DIAO P C, ZHANG R X, et al. Research on 3D multi-branch aggregated lightweight network video action recognition algorithm. Acta Electronica Sinica, 2020, 48(7): 1261- 1268.
|
17 |
谢昭, 周义, 吴克伟, 等. 基于时空关注度LSTM的行为识别. 计算机学报, 2021, 44(2): 261- 274.
|
|
XIE Z, ZHOU Y, WU K W, et al. Activity recognition based on spatial-temporal attention LSTM. Chinese Journal of Computers, 2021, 44(2): 261- 274.
|
18 |
张小俊, 李辰政, 孙凌宇, 等. 基于改进3D卷积神经网络的行为识别. 计算机集成制造系统, 2019, 25(8): 2000- 2006.
|
|
ZHANG X J, LI C Z, SUN L Y, et al. Behavior recognition method based on improved 3D convolutional neural network. Computer Integrated Manufacturing Systems, 2019, 25(8): 2000- 2006.
|
19 |
于明理. 基于三维卷积神经网络的实时视频动作分类关键技术研究[D]. 北京: 北京邮电大学, 2019.
|
|
YU M L. Research on key technologies of real-time video action classification based on 3D convolutional neural network[D]. Beijing: Beijing University of Posts and Telecommunications, 2019. (in Chinese)
|
20 |
石祥滨, 李怡颖, 刘芳, 等. T-STAM: 基于双流时空注意力机制的端到端的动作识别模型. 计算机应用研究, 2021, 38(4): 1235-1239, 1276.
|
|
SHI X B, LI Y Y, LIU F, et al. T-STAM: end-to-end action recognition model based on two-stream network with spatio-temporal attention mechanism. Application Research of Computers, 2021, 38(4): 1235-1239, 1276.
|
21 |
HARA K, KATAOKA H, SATOH Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet?[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6546-6555.
|
22 |
|
23 |
范银行, 赵海峰, 张少杰. 基于3D卷积残差网络的人体动作识别算法. 计算机应用研究, 2020, 37(S2): 300-301, 304.
|
|
FAN Y H, ZHAO H F, ZHANG S J. Human action recognition algorithm based on 3D convolutional residual network. Application Research of Computers, 2020, 37(S2): 300-301, 304.
|
24 |
GAO Y J, YANG F Y, YU Q H, et al. Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Microchimica Acta, 2019, 186(3): 192.
|
25 |
|
26 |
CAI J H, HU J G. 3DRANs: 3D residual attention networks for action recognition. The Visual Computer, 2020, 36(6): 1261- 1270.
|
27 |
高德勇, 康自兵, 王松, 等. 利用卷积块注意力机制识别人体动作的方法. 西安电子科技大学学报, 2022, 49(4): 144-155, 200.
|
|
GAO D Y, KANG Z B, WANG S, et al. Method for recognizing human actions using convolutional block attention mechanism. Journal of Xidian University, 2022, 49(4): 144-155, 200.
|
28 |
LI Y, JI B, SHI X T, et al. TEA: temporal excitation and aggregation for action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 909-918.
|
29 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 7132-7141.
|
30 |
|
31 |
KUEHNE H, JHUANG H, GARROTE E, et al. HMDB: a large video database for human motion recognition[C]//Proceedings of the International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2011: 2556-2563.
|
32 |
WANG Z W, SHE Q, SMOLIC A. ACTION-net: multipath excitation for action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 13209-13218.
|
33 |
ZHUANG D F, JIANG M, KONG J, et al. Spatiotemporal attention enhanced features fusion network for action recognition. International Journal of Machine Learning and Cybernetics, 2021, 12(3): 823- 841.
|
34 |
CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the Kinetics dataset[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 6299-6308.
|
35 |
ZHU J G, ZHU Z, ZOU W. End-to-end video-level representation learning for action recognition[C]//Proceedings of the 24th International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 645-650.
|
36 |
DIBA A L, FAYYAZ M, SHARMA V, et al. Temporal 3D ConvNets: new architecture and transfer learning for video classification[EB/OL]. [2023-08-05]. http://arxiv.org/abs/1711.08200v1.
|
37 |
WANG L M, XIONG Y J, WANG Z, et al. Temporal segment networks: towards good practices for deep action recognition[EB/OL]. [2023-08-05]. https://arxiv.org/abs/1608.00859.
|