1 |
谢斯琪, 陈学刚, 董煜. 我国城市形态对空气质量影响的研究进展. 环境保护科学, 2024, 50 (1): 19- 26.
|
|
XIE S Q , CHEN X G , DONG Y . Research progress on the influence of urban form on air quality in China. Environmental Protection Science, 2024, 50 (1): 19- 26.
|
2 |
王玉, 刘文璋. 清洁取暖政策试点的空气质量改善效应评估——基于三批试点地级市的准自然实验. 中国环境科学, 2024, (1): 581- 592.
|
|
WANG Y , LIU W Z . Evaluation of air quality improvement effect of clean heating policy pilot: quasi-natural experiment based on three batches of pilot prefecture-level cities. China Environmental Science, 2024, (1): 581- 592.
|
3 |
CHEN Y S , HUANG L , XIE X D , et al. Improved prediction of hourly PM2.5 concentrations with a long short-term memory and spatio-temporal causal convolutional network deep learning model. Science of the Total Environment, 2024, 912, 168672.
doi: 10.1016/j.scitotenv.2023.168672
|
4 |
孙飞燕, 袁宏俊, 张圣梅. 组合预测模型构建及在合肥市PM2.5浓度预测中的应用. 山西大同大学学报(自然科学版), 2023, 39 (1): 54- 61.
|
|
SUN F Y , YUAN H J , ZHANG S M . Construction ofcombined prediction model and its application in the prediction of PM2.5 concentration in Hefei. Journal of Shanxi Datong University (Natural Science Edition), 2023, 39 (1): 54- 61.
|
5 |
BOSE A , CHOWDHURY I R . Towards cleaner air in Siliguri: acomprehensive study of PM2.5 and PM10 through advancecomputational forecasting models for effective environmental interventions. Atmospheric Pollution Research, 2024, 15 (2): 1- 10.
|
6 |
ZENG Y , NING X N , LI Y Q , et al. Spatial patterns of PM2.5-bound heavy metals and analysis of their influencing factors in China. Anthropocene, 2023, 44, 100415.
doi: 10.1016/j.ancene.2023.100415
|
7 |
张鑫磊, 张冬峰, 刘伟, 等. 基于多通道长短期记忆网络的PM2.5小时浓度预报. 环境科学研究, 2022, 35 (12): 2685- 2692.
|
|
ZHANG X L , ZHANG D F , LIU W , et al. Hourly concentration prediction of PM2.5 based on multi-channels long short term memory. Research of Environmental Sciences, 2022, 35 (12): 2685- 2692.
|
8 |
李颖若, 汪君霞, 韩婷婷, 等. 利用多元线性回归方法评估气象条件和控制措施对APEC期间北京空气质量的影响. 环境科学, 2019, 40 (3): 1024- 1034.
|
|
LI Y R , WANG J X , HAN T T , et al. Using multiple linear regression method to evaluate the impact of meteorological conditions and control measures on air quality in Beijing during APEC 2014. Environmental Science, 2019, 40 (3): 1024- 1034.
|
9 |
黄伟建, 李丹阳, 黄远. 基于深度学习的PM2.5浓度长期预测. 计算机应用研究, 2021, 38 (6): 1809- 1814.
|
|
HUANG W J , LI D Y , HUANG Y . Long-term prediction of PM2.5 concentration based on deep learning. Application Research of Computers, 2021, 38 (6): 1809- 1814.
|
10 |
韩存鑫, 陈超, 黄乐成. 基于贝叶斯优化的集成模型对PM2.5浓度预测. 实验室研究与探索, 2022, 41 (10): 65- 69.
|
|
HAN C X , CHEN C , HUANG L C . PM2.5 concentration forecasting based on integrated model by Bayesian optimization. Research and Exploration in Laboratory, 2022, 41 (10): 65- 69.
|
11 |
ZHANG X X , GAN H . STF-Net: an improved depth network based on spatio-temporal data fusion for PM2.5 concentration prediction. Future Generation Computer Systems, 2023, 144, 37- 49.
doi: 10.1016/j.future.2023.02.023
|
12 |
范昕炜, 宣泉森. 基于神经网络的PM2.5质量浓度预测模型. 安全与环境学报, 2022, 22 (6): 3499- 3507.
|
|
FAN X W , XUAN Q S . Prediction model of PM2.5 mass concentration based on neural network. Journal of Safety and Environment, 2022, 22 (6): 3499- 3507.
|
13 |
YANG H , WANG C , LI G H . A newcombination model using decomposition ensemble framework and error correction technique for forecasting hourly PM2.5 concentration. Journal of Environmental Management, 2022, 318, 115498.
doi: 10.1016/j.jenvman.2022.115498
|
14 |
LIU R F , PANG L X , YANG Y D , et al. Air quality—meteorology correlation modeling using random forest and neural network. Sustainability, 2023, 15 (5): 4531.
doi: 10.3390/su15054531
|
15 |
杨长春, 聂倩倩. 面向PM2.5预测的时间序列分解与机器学习融合模型. 安全与环境学报, 2023, (12): 4600- 4608.
|
|
YANG C C , NIE Q Q . Time series decomposition and machine learning fusion model for PM2.5 forecasting. Journal of Safety and Environment, 2023, (12): 4600- 4608.
|
16 |
王勇, 任栋, 刘严萍, 等. 基于小波变换与回归分析的融合GNSS水汽、风速和PM10要素的PM2.5浓度模型. 系统工程理论与实践, 2020, 40 (3): 761- 770.
|
|
WANG Y , REN D , LIU Y P , et al. PM2.5 concentration model of GNSS precipitable water vapor, wind speed and PM10 based on wavelet transform and regression analysis. Systems Engineering-Theory & Practice, 2020, 40 (3): 761- 770.
|
17 |
LIANG F C , GAO M , XIAO Q Y , et al. Evaluation of a data fusion approach to estimate daily PM2.5 levels in North China. Environmental Research, 2017, 158, 54- 60.
doi: 10.1016/j.envres.2017.06.001
|
18 |
XUE T , ZHENG Y X , GENG G N , et al. Estimating spatiotemporal variation in ambient ozone exposure during 2013—2017 using a data-fusion model. Environmental Science & Technology, 2020, 54 (23): 14877- 14888.
|
19 |
ZAHED F , PARDAKHTI A , MOTLAGH M S , et al. Infiltration of outdoor PM2.5 and influencing factors. Air Quality, Atmosphere & Health, 2022, 15 (12): 2215- 2230.
|
20 |
杨茜雯, 朱萌. 基于ARIMA模型对扬州市PM2.5的分析和预测. 黑龙江环境通报, 2022, 35 (1): 35-37, 40.
doi: 10.3969/j.issn.1674-263X.2022.01.012
|
|
YANG Q W , ZHU M . Analysis and prediction of PM2.5 in Yangzhou based on ARIMA model. Heilongjiang Environmental Journal, 2022, 35 (1): 35-37, 40.
doi: 10.3969/j.issn.1674-263X.2022.01.012
|
21 |
SINGH S , BANSAL P , HOSEN M , et al. Forecasting annual natural gas consumption in USA: application of machine learning techniques-ANN and SVM. Resources Policy, 2023, 80, 103159.
doi: 10.1016/j.resourpol.2022.103159
|
22 |
李攀凤, 马祖军, 孙浩. 基于SARIMA组合预测模型的血液供需预测研究. 工业工程与管理, 2023, 3, 176- 186.
|
|
LI P F , MA Z J , SUN H . Research on blood supply and demand prediction based on SARIMAcombinatorial prediction model. Industrial Engineering and Management, 2023, 3, 176- 186.
|
23 |
AKAIKE H . Factor analysis and AIC. Psychometrika, 1987, 52 (3): 317- 332.
doi: 10.1007/BF02294359
|
24 |
张侠. 基于SVM和逻辑回归的糖尿病数据分析与研究. 沧州师范学院学报, 2023, 39 (1): 19-23, 84.
doi: 10.3969/j.issn.2095-2910.2023.01.005
|
|
ZHANG X . Analysis and study of diabetes data based on SVM and logistic regression. Journal of Cangzhou Normal University, 2023, 39 (1): 19-23, 84.
doi: 10.3969/j.issn.2095-2910.2023.01.005
|
25 |
徐存东, 王鑫, 田俊姣, 等. 基于ARIMA-SVM方法的梯级泵站机组运行趋势预测. 水电能源科学, 2023, 41 (2): 133- 136.
|
|
XU C D , WANG X , TIAN J J , et al. Operation trend prediction of cascade pumping stations based on ARIMA-SVM method. Water Resources and Power, 2023, 41 (2): 133- 136.
|
26 |
LU Z X , YAO K , LI X L , et al. Research on ultrasonic defect imaging based on a neural network with Gaussian weight function fusion model. Construction and Building Materials, 2024, 411, 134229.
doi: 10.1016/j.conbuildmat.2023.134229
|
27 |
HE N , QIAN C , LIU L Q , et al. Air conditioning load prediction based on hybrid data decomposition and non-parametric fusion model. Journal of Building Engineering, 2023, 80, 108095.
doi: 10.1016/j.jobe.2023.108095
|