[1] SUNG H, FERLAY J, SIEGEL R L, et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA:a Cancer Journal for Clinicians, 2021, 71(3):209-249. [2] 杨之洵, 郑荣寿, 张思维, 等.中国胃癌发病趋势及预测[J].中国肿瘤, 2019, 28(5):321-326. YANG Z X, ZHENG R S, ZHANG S W, et al.Trend and prediction of stomach cancer incidence in China[J].China Cancer, 2019, 28(5):321-326.(in Chinese) [3] 周晓进, 徐陈铭, 阮彤.面向中文电子病历的多粒度医疗实体识别[J].计算机科学, 2021, 48(4):237-242. ZHOU X J, XU C M, RUAN T.Multi-granularity medical entity recognition for Chinese electronic medical records[J].Computer Science, 2021, 48(4):237-242.(in Chinese) [4] NGUYEN P, TRAN T, WICKRAMASINGHE N, et al.Deepr:a convolutional net for medical records[EB/OL].[2021-08-08].https://arxiv.org/pdf/1607.07519.pdf. [5] MA F L, CHITTA R, ZHOU J, et al.Dipole:diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2017:13-17. [6] KIM Y J, LEE Y G, KIM J W, et al.Highrisk prediction from electronic medical records via deep attention networks[EB/OL].[2021-08-08].https://arxiv.org/pdf/1712.00010.pdf. [7] 郑丹青.基于SPRINT算法的胃癌临床医疗数据挖掘研究[J].吉林师范大学学报(自然科学版), 2012, 33(2):121-124. ZHENG D Q.Research on the gastric cancer clinical medical data mining research based on SPRINT classification algorithm[J].Jilin Normal University Journal (Natural Science Edition), 2012, 33(2):121-124.(in Chinese) [8] MAHMOODI S A, MIRZAIE K, MAHMOUDI S M.A new algorithm to extract hidden rules of gastric cancer data based on ontology[J].SpringerPlus, 2016, 5:312. [9] 田燕, 张婷, 吴洋东, 等.基于HTCPN的胃癌诊疗路径建模与应用[J].计算机应用研究, 2013, 30(2):458-461, 464. TIAN Y, ZHANG T, WU Y D, et al.Modeling and application of clinical pathway based on HTCPN for stomach cancer[J].Application Research of Computers, 2013, 30(2):458-461, 464.(in Chinese) [10] YOON H J, KIM S, KIM J H, et al.A lesion-based convolutional neural network improves endoscopic detection and depth prediction of early gastric cancer[J].Journal of Clinical Medicine, 2019, 8(9):1310. [11] LUO H Y, XU G L, LI C F, et al.Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy:a multicentre, case-control, diagnostic study[J].The Lancet Oncology, 2019, 20(12):1645-1654. [12] GARCIA E, HERMOZA R, CASTANON C B, et al.Automatic lymphocyte detection on gastric cancer IHC images using deep learning[C]//Proceedings of the 30th International Symposium on Computer-Based Medical Systems.Washington D.C., USA:IEEE Press, 2017:200-204. [13] 黄丽, 李艳霞, 吴练练, 等.基于深度学习的良恶性胃溃疡人工智能辅助诊断系统研究[J].中华消化内镜杂志, 2020, 37(7):476-480. HUANG L, LI Y X, WU L L, et al.Artificial intelligence-assisted diagnosis system of benign and malignant gastric ulcer based on deep learning[J].Chinese Journal of Digestive Endoscopy, 2020, 37(7):476-480.(in Chinese) [14] KANESAKA T, LEE T C, UEDO N, et al.Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging[J].Gastrointestinal Endoscopy, 2018, 87(5):1339-1344. [15] WANG H, DING S, WU D S, et al.Smart connected electronic gastroscope system for gastric cancer screening using multi-column convolutional neural networks[J].International Journal of Production Research, 2019, 57(21):6795-6806. [16] 官洪运, 欧阳江坤, 杨益伟, 等.基于特征融合的改进LCT跟踪算法[J].计算机工程, 2019, 45(8):241-247. GUAN H Y, OUYANG J K, YANG Y W, et al.Improved LCT tracking algorithm based on feature fusion[J]. Computer Engineering, 2019, 45(8):241-247.(in Chinese) [17] NAOUI M A, LEJDEL B, AYAD M, et al.Integrating deep learning, social networks, and big data for healthcare system[J].Bio-Algorithms and Med-Systems, 2020, 16(1):159-169. [18] YAO J W, ZHU X L, ZHU F Y, et al.Deep correlational learning for survival prediction from multi-modality data[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2017:406-414. [19] EL-SAPPAGH S, ABUHMED T, RIAZUL ISLAM S M, et al.Multimodal multitask deep learning model for Alzheimer's disease progression detection based on time series data[J].Neurocomputing, 2020, 412:197-215. [20] KHALEGHI B, KHAMIS A, KARRAY F O, et al.Multisensor data fusion:a review of the state-of-the-art[J].Information Fusion, 2013, 14(1):28-44. [21] ZHANG C, YANG Z C, HE X D, et al.Multimodal intelligence:representation learning, information fusion, and applications[J].IEEE Journal of Selected Topics in Signal Processing, 2020, 14(3):478-493. [22] ZHANG Z Z, CHEN P J, SAPKOTA M, et al.TandemNet:distilling knowledge from medical images using diagnostic reports as optional semantic references[C]//Proceedings of Medical Image Computing and Computer Assisted Intervention.Berlin, Germany:Springer, 2017:320-328. [23] WANG X S, PENG Y F, LU L, et al.TieNet:text-image embedding network for common thorax disease classification and reporting in chest X-rays[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:9049-9058. [24] QIU X P, SUN T X, XU Y G, et al.Pre-trained models for natural language processing:a survey[J].Science China Technological Sciences, 2020, 63(10):1871-1897. [25] DEVLIN J, CHANG M W, LEE K, et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2021-08-08].https://arxiv.org/pdf/1810.04805.pdf. [26] LIU Y H, OTT M, GOYAL N, et al.RoBERTa:a robustly optimized BERT pretraining approach[EB/OL].[2021-08-08].https://arxiv.org/abs/1907.11692v1. [27] CLARK K, LUONG M T, LE Q V, et al.ELECTRA:pre-training text encoders as discriminators rather than generators[EB/OL].[2021-08-08].https://arxiv.org/abs/2003.10555. [28] YAN R, ZHANG F, RAO X S, et al.Richer fusion network for breast cancer classification based on multimodal data[J].BMC Medical Informatics and Decision Making, 2021, 21(Suppl 1):134. |