1 |
TIAN C W, ZHANG X Y, WANG T, et al. Adaptive convolutional neural network for image super-resolution[EB/OL]. [2024-02-11]. http://arxiv.org/abs/2402.15704.
|
2 |
TIAN C W, ZHANG X Y, LIN J C W, et al. Generative adversarial networks for image super-resolution: a survey[EB/OL]. [2024-02-11]. http://arxiv.org/abs/2204.13620.
|
3 |
|
4 |
CHEN B Z , LIU Y S , ZHANG Z , et al. TransAttUnet: multi-level attention-guided U-net with Transformer for medical image segmentation. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8 (1): 55- 68.
doi: 10.1109/TETCI.2023.3309626
|
5 |
|
6 |
|
7 |
金柯君, 于洪涛, 吴翼腾, 等. 基于改进投影梯度下降算法的图卷积网络投毒攻击. 计算机工程, 2022, 48 (10): 176- 183.
URL
|
|
JIN K J , YU H T , WU Y T , et al. Poisoning attack on graph convolutional network based on improved projection gradient descent algorithm. Computer Engineering, 2022, 48 (10): 176- 183.
URL
|
8 |
李倩, 向海昀, 张玉婷, 等. 结合高斯滤波与MASK的G-MASK人脸对抗攻击. 计算机工程, 2024, 50 (2): 308- 316.
URL
|
|
LI Q , XIANG H Y , ZHANG Y T , et al. G-MASK facial adversarial attackcombining Gaussian filtering and MASK. Computer Engineering, 2024, 50 (2): 308- 316.
URL
|
9 |
刘颖, 杨鹏飞, 张立军, 等. 前馈神经网络和循环神经网络的鲁棒性验证综述. 软件学报, 2023, 34 (7): 3134- 3166.
|
|
LIU Y , YANG P F , ZHANG L J , et al. Survey on robustness verification of feedforward neural networks and recurrent neural networks. Journal of Software, 2023, 34 (7): 3134- 3166.
|
10 |
姜妍, 张立国. 面向深度学习模型的对抗攻击与防御方法综述. 计算机工程, 2021, 47 (1): 1- 11.
URL
|
|
JIANG Y , ZHANG L G . Survey of adversarial attacks and defense methods for deep learning model. Computer Engineering, 2021, 47 (1): 1- 11.
URL
|
11 |
刘艾杉, 郭骏, 李思民, 等. 面向深度强化学习的对抗攻防综述. 计算机学报, 2023, 46 (8): 1553- 1576.
|
|
LIU A S , GUO J , LI S M , et al. A survey on adversarial attacks and defenses for deep reinforcement learning. Chinese Journal of Computers, 2023, 46 (8): 1553- 1576.
|
12 |
|
13 |
GOLDBLUM M, FOWL L, FEIZI S, et al. Adversarially robust distillation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2020: 3996-4003.
|
14 |
ZI B J, ZHAO S H, MA X J, et al. Revisiting adversarial robustness distillation: robust soft labels make student better[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 16443-16452.
|
15 |
NASEER M , KHAN S , HAYAT M , et al. Stylized adversarial defense. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45 (5): 6403- 6414.
|
16 |
ZHAO S J, YU J, SUN Z L, et al. Enhanced accuracy and robustness via multi-teacher adversarial distillation[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 585-602.
|
17 |
HUANG B, CHEN M Y, WANG Y, et al. Boosting accuracy and robustness of student models via adaptive adversarial distillation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 24668-24677.
|
18 |
LI Y F, HU P, LIU Z T, et al. Contrastive clustering[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 8547-8555.
|
19 |
JIA X J, ZHANG Y, WU B Y, et al. LAS-AT: adversarial training with learnable attack strategy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 13388-13398.
|
20 |
|
21 |
CROCE F, HEIN M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks[EB/OL]. [2024-02-11]. http://arxiv.org/abs/2003.01690.
|
22 |
JIA X J, WEI X X, CAO X C, et al. ComDefend: an efficient imagecompression model to defend adversarial examples[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 6077-6085.
|
23 |
ATHALYE A, CARLINI N, WAGNER D. Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples[EB/OL]. [2024-02-11]. http://arxiv.org/abs/1802.00420.
|
24 |
ZHANG H Y, YU Y D, JIAO J T, et al. Theoretically principled trade-off between robustness and accuracy[EB/OL]. [2024-02-11]. http://arxiv.org/abs/1901.08573.
|
25 |
HSIUNG L, TSAI Y Y, CHEN P Y, et al. Towardscompositional adversarial robustness: generalizing adversarial training tocomposite semantic perturbations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 24658-24667.
|
26 |
DONG J H, MOOSAVI-DEZFOOLI S M, LAI J H, et al. The enemy of my enemy is my friend: exploring inverse adversaries for improving adversarial training[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 24678-24687.
|
27 |
XIE C H, WU Y X, VAN DER MAATEN L, et al. Feature denoising for improving adversarial robustness[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2019: 501-509.
|
28 |
|
29 |
WEI Z M, WANG Y F, GUO Y W, et al. CFA: class-wise calibrated fair adversarial training[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 8193-8201.
|
30 |
|
31 |
|
32 |
CHEN T, ZHANG Z, LIU S, et al. Robust overfitting may be mitigated by properly learned smoothening[C]//Proceedings of International Conference on Learning Representations. Washington D.C., USA: IEEE Press, 2020: 1-10.
|
33 |
|
34 |
|
35 |
|