1 |
刘万奎, 刘越. 用于增强现实的光照估计研究综述. 计算机辅助设计与图形学学报, 2016, 28 (2): 197- 207.
doi: 10.3969/j.issn.1003-9775.2016.02.001
|
|
LIU W K , LIU Y . A review of illumination estimation for augmented reality. Journal of Computer-Aided Design & Computer Graphics, 2016, 28 (2): 197- 207.
doi: 10.3969/j.issn.1003-9775.2016.02.001
|
2 |
MOHAMMADKHORASANI A , MALEK K , MOJIDRA R , et al. Augmented reality-computer vision combination for automatic fatigue crack detection and localization. Computers in Industry, 2023, 149, 103936.
doi: 10.1016/j.compind.2023.103936
|
3 |
CAO J , LAM K Y , LEE L H , et al. Mobile augmented reality: user interfaces, frameworks, and intelligence. ACM Computing Surveys, 2023, 55 (9): 1- 36.
|
4 |
滕嘉玮, 赵岩, 张艾嘉, 等. 基于二维仿射变换的几何一致性虚实融合. 光学精密工程, 2022, 30 (11): 1374- 1382.
doi: 10.37188/OPE.20223011.1374
|
|
TENG J W , ZHAO Y , ZHANG A J , et al. Virtual-real fusion with geometric consistency based on two-dimensional affine transformation. Optics and Precision Engineering, 2022, 30 (11): 1374- 1382.
doi: 10.37188/OPE.20223011.1374
|
5 |
LEGENDRE C, MA W C, FYFFE G, et al. DeepLight: learning illumination for unconstrained mobile mixed reality[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 5918-5928.
|
6 |
BHATT D , PATEL C , TALSANIA H , et al. CNN variants for computer vision: history, architecture, application, challenges and future scope. Electronics, 2021, 10 (20): 2470.
doi: 10.3390/electronics10202470
|
7 |
GARON M, SUNKAVALLI K, HADAP S, et al. Fast spatially-varying indoor lighting estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 6908-6917.
|
8 |
ZHU Y J, ZHANG Y D, LI S, et al. Spatially-varying outdoor lighting estimation from intrinsics[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 12834-12842.
|
9 |
DONG S , WANG P , ABBAS K . A survey on deep learning and its applications. Computer Science Review, 2021, 40, 100379.
doi: 10.1016/j.cosrev.2021.100379
|
10 |
SONG S R, FUNKHOUSER T. Neural illumination: lighting prediction for indoor environments[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2019: 6918-6926.
|
11 |
WANG G C, YANG Y N, LOY C C, et al. StyleLight: HDR panorama generation for lighting estimation and editing[EB/OL]. [2023-10-05]. https://arxiv.org/abs/2207.14811.
|
12 |
GARDNER M A , SUNKAVALLI K , YUMER E , et al. Learning to predict indoor illumination from a single image. ACM Transactions on Graphics, 2017, 36 (6): 1- 14.
|
13 |
曹天池, 李秀实, 李丹, 等. 基于图像分解的光照估计算法. 计算机工程与科学, 2021, 43 (8): 1422- 1428.
doi: 10.3969/j.issn.1007-130X.2021.08.011
|
|
CAO T C , LI X S , LI D , et al. Illumination estimation based on image decomposition. Computer Engineering & Science, 2021, 43 (8): 1422- 1428.
doi: 10.3969/j.issn.1007-130X.2021.08.011
|
14 |
SOMANATH G, KURZ D. HDR environment map estimation for real-time augmented reality[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 11298-11306.
|
15 |
HOLD-GEOFFROY Y, SUNKAVALLI K, HADAP S, et al. Deep outdoor illumination estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 7312-7321.
|
16 |
ZHAO J , CHALMERS A , RHEE T . Adaptive light estimation using dynamic filtering for diverse lighting conditions. IEEE Transactions on Visualization and Computer Graphics, 2021, 27 (11): 4097- 4106.
doi: 10.1109/TVCG.2021.3106497
|
17 |
CHENG H , XU C , WANG J , et al. Fast and accurate illumination estimation using LDR panoramic images for realistic rendering. IEEE Transactions on Visualization and Computer Graphics, 2023, 29 (12): 5235- 5249.
doi: 10.1109/TVCG.2022.3205614
|
18 |
吴广运, 周治平. 基于阴影检测的增强现实光照一致性实现. 激光与光电子学进展, 2022, 59 (2): 350- 355.
|
|
WU G Y , ZHOU Z P . Realizing illumination consistency in augmented reality based on shadow detection. Laser & Optoelectronics Progress, 2022, 59 (2): 350- 355.
|
19 |
CHENG D C , SHI J , CHEN Y Y , et al. Learning scene illumination by pairwise photos from rear and front mobile cameras. Computer Graphics Forum, 2018, 37 (7): 213- 221.
doi: 10.1111/cgf.13561
|
20 |
SUN Y K, LI D, LIU S, et al. Learning illumination from a limited field-of-view image[C]//Proceedings of the IEEE International Conference on Multimedia & Expo Workshops. Washington D.C., USA: IEEE Press, 2020: 1-6.
|
21 |
LI Z Q , YU L , OKUNEV M , et al. Spatiotemporally consistent HDR indoor lighting estimation. ACM Transactions on Graphics, 2023, 42 (3): 1- 15.
|
22 |
LIU C L , WANG L Y , LI Z , et al. Real-time lighting estimation for augmented reality via differentiable screen-space rendering. IEEE Transactions on Visualization and Computer Graphics, 2022, 29 (4): 2132- 2145.
|
23 |
ZHANG A J , ZHAO Y , WANG S G . An improved augmented-reality framework for differential rendering beyond the lambertian-world assumption. IEEE Transactions on Visualization and Computer Graphics, 2020, 27 (12): 4374- 4386.
|
24 |
LI M T, GUO J, CUI X F, et al. Deep spherical Gaussian illumination estimation for indoor scene[C]//Proceedings of the ACM Multimedia Asia. New York, USA: ACM Press, 2019: 1-6.
|
25 |
ZHAN F N , ZHANG C G , YU Y C , et al. EMLight: lighting estimation via spherical distribution approximation. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (4): 3287- 3295.
doi: 10.1609/aaai.v35i4.16440
|
26 |
赵宏, 陈志文, 郭岚, 等. 基于ViT与语义引导的视频内容描述生成. 计算机工程, 2023, 49 (5): 247- 254.
URL
|
|
ZHAO H , CHEN Z W , GUO L , et al. Video content caption generation based on ViT and semantic guidance. Computer Engineering, 2023, 49 (5): 247- 254.
URL
|
27 |
HAN K , WANG Y H , CHEN H T , et al. A survey on Vision Transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (1): 87- 110.
doi: 10.1109/TPAMI.2022.3152247
|
28 |
|
29 |
ZHANG Q , YANG Y B . ResT: an efficient transformer for visual recognition. Advances in Neural Information Processing Systems, 2021, 34, 15475- 15485.
|
30 |
|
31 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2019: 1314-1324.
|
32 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 6848-6856.
|
33 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 1580-1589.
|