1 |
丁光耀, 徐辰, 钱卫宁, 等. 支持深度学习的视觉数据库管理系统研究进展. 软件学报, 2024, 35 (3): 1207- 1230.
|
|
DING G Y , XU C , QIAN W N , et al. Research progress on vision database management systems supporting deep learning. Journal of Software, 2024, 35 (3): 1207- 1230.
|
2 |
周敏, 张俊然, 李南欣. 基于轴向空间注意力和中间融合表示的单图像三维重建模型. 半导体光电, 2023, 44 (1): 122- 127.
|
|
ZHOU M , ZHANG J R , LI N X . A single-image 3D reconstruction model based on axial spatial attention and intermediate fusion representation. Semiconductor Optoelectronics, 2023, 44 (1): 122- 127.
|
3 |
LIU A A , LU H C , ZHOU H Y , et al. Balanced class-incremental 3D object classification and retrieval. IEEE Transactions on Knowledge and Data Engineering, 2024, 36 (1): 35- 48.
doi: 10.1109/TKDE.2023.3284032
|
4 |
QIN S W, LI Z, LIU L G. Robust 3D shape classification via non-local graph attention network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2023: 5374-5383.
|
5 |
WANG H W, TANG J J, JI J Y, et al. Beyond first impressions: integrating joint multi-modal cues for comprehensive 3D representation[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York, USA: ACM Press, 2023: 3403-3414.
|
6 |
LI X, SHI B T, HOU Y N, et al. Homogeneous multi-modal feature fusion and interaction for 3D object detection[EB/OL]. [2024-03-05]. https://arxiv.org/abs/2210.09615.
|
7 |
雷嘉铭, 俞辉, 夏羽, 等. 基于多方向特征融合的室外三维目标检测方法. 计算机工程, 2023, 49 (11): 238- 246.
URL
|
|
LEI J M , YU H , XIA Y , et al. Outdoor 3D object detection method based on multi-direction features fusion. Computer Engineering, 2023, 49 (11): 238- 246.
URL
|
8 |
CHEN L F , ZHANG Q . DDGCN: graph convolution network based on direction and distance for point cloud learning. The Visual Computer, 2023, 39 (3): 863- 873.
doi: 10.1007/s00371-021-02351-8
|
9 |
WU B , LANG B . MSGCN: a multiscale spatio graph convolution network for 3D point clouds. Multimedia Tools and Applications, 2023, 82 (23): 35949- 35968.
doi: 10.1007/s11042-023-14639-z
|
10 |
WEI X , YU R , SUN J . Learning view-based graph convolutional network for multi-view 3D shape analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (6): 7525- 7541.
doi: 10.1109/TPAMI.2022.3221785
|
11 |
CAO J Z , YU L G , LING B W K , et al. MHSAN: multi-view hierarchical self-attention network for 3D shape recognition. Pattern Recognition, 2024, 150, 110315.
doi: 10.1016/j.patcog.2024.110315
|
12 |
|
13 |
陈浩楠, 朱映映, 赵骏骐, 等. 基于多模态关系建模的三维形状识别方法. 软件学报, 2024, 35 (5): 2208- 2219.
|
|
CHEN H N , ZHU Y Y , ZHAO J Q , et al. Three-dimensional shape recognition method based on multimodal relationship modeling. Journal of Software, 2024, 35 (5): 2208- 2219.
|
14 |
YOU H X, FENG Y F, JI R R, et al. PVNet: a joint convolutional network of point cloud and multi-view for 3D shape recognition[C]//Proceedings of the 26th ACM International Conference on Multimedia. New York, USA: ACM Press, 2018: 1310-1318.
|
15 |
PENG B, YU Z R, LEI J J, et al. Attention-guided fusion network of point cloud and multiple views for 3D shape recognition[C]//Proceedings of the IEEE International Conference on Visual Communications and Image Processing. Washington D.C., USA: IEEE Press, 2020: 185-188.
|
16 |
CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 652-660.
|
17 |
WANG Y , SUN Y B , LIU Z W , et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 2019, 38 (5): 1- 12.
|
18 |
BELLO S A , WANG C , WAMBUGU N M , et al. FFPointNet: local and global fused feature for 3D point clouds analysis. Neurocomputing, 2021, 461, 55- 62.
doi: 10.1016/j.neucom.2021.07.044
|
19 |
周燕, 柯添, 罗粤, 等. 三维模型普适性特征提取与分类. 计算机辅助设计与图形学学报, 2023, 35 (8): 1216- 1228.
|
|
ZHOU Y , KE T , LUO Y , et al. Universal feature extraction and classification for 3D models. Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (8): 1216- 1228.
|
20 |
SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2015: 945-953.
|
21 |
WEI X, YU R X, SUN J. View-GCN: view-based graph convolutional network for 3D shape analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 1850-1859.
|
22 |
LIU Z H , ZHANG Y H , GAO J , et al. VFMVAC: view-filtering-based multi-view aggregating convolution for 3D shape recognition and retrieval. Pattern Recognition, 2022, 129, 108774.
doi: 10.1016/j.patcog.2022.108774
|
23 |
LIN D Y , LI Y Q , CHENG Y , et al. Multi-view 3D object retrieval leveraging the aggregation of view and instance attentive features. Knowledge-Based Systems, 2022, 247, 108754.
doi: 10.1016/j.knosys.2022.108754
|
24 |
ZHAO Y X, JIAO J C, LI N, et al. MANet: multimodal attention network based point-view fusion for 3D shape recognition[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 134-141.
|
25 |
HE X W , CHENG S L , LIANG D K , et al. LATFormer: locality-aware point-view fusion transformer for 3D shape recognition. Pattern Recognition, 2024, 151, 110413.
doi: 10.1016/j.patcog.2024.110413
|
26 |
HE X W, ZHOU Y, ZHOU Z C, et al. Triplet-center loss for multi-view 3D object retrieval[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 1945-1954.
|
27 |
WANG D , WANG B , YAO H X , et al. Center-push loss for joint view-based 3D model classification and retrieval feature learning. Signal, Image and Video Processing, 2023, 17 (4): 873- 880.
doi: 10.1007/s11760-021-01923-4
|
28 |
CHEN Q , CHEN Y N . Multi-view 3D model retrieval based on enhanced detail features with contrastive center loss. Multimedia Tools and Applications, 2022, 81 (8): 10407- 10426.
doi: 10.1007/s11042-022-12281-9
|
29 |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90.
doi: 10.1145/3065386
|
30 |
REN H , ZHENG Z Q , WU Y , et al. ACNet: approaching-and-centralizing network for zero-shot sketch-based image retrieval. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (9): 5022- 5035.
doi: 10.1109/TCSVT.2023.3248646
|
31 |
LIU Z S , SONG W , TIAN Y F , et al. VB-Net: voxel-based broad learning network for 3D object classification. Applied Sciences, 2020, 10 (19): 6735.
doi: 10.3390/app10196735
|
32 |
MA Z P , ZHOU J , MA J L , et al. A novel 3D shape recognition method based on double-channel attention residual network. Multimedia Tools and Applications, 2022, 81 (22): 32519- 32548.
doi: 10.1007/s11042-022-12041-9
|
33 |
SINGH V V, SHESHAPPANAVAR S V, KAMBHAMETTU C. MeshNet++: a network with a face[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 4883-4891.
|
34 |
LAHAV A , TAL A . MeshWalker. ACM Transactions on Graphics, 2020, 39 (6): 1- 13.
|
35 |
ZHOU Y , DANG Z L , ZHANG H D , et al. EFSCNN: encoded feature sphere convolution neural network for fast non-rigid 3D models classification and retrieval. Computer Vision and Image Understanding, 2023, 233, 103724.
doi: 10.1016/j.cviu.2023.103724
|
36 |
CHEN J J, KAKILLIOGLU B, REN H T, et al. Why discard if you can recycle? : a recycling max pooling module for 3D point cloud analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 559-567.
|
37 |
LIU A N , ZHOU H Y , LI M J , et al. 3D model retrieval based on multi-view attentional convolutional neural network. Multimedia Tools and Applications, 2020, 79 (7): 4699- 4711.
|
38 |
HUANG J J , YAN W , LI G , et al. Learning disentangled representation for multi-view 3D object recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32 (2): 646- 659.
doi: 10.1109/TCSVT.2021.3062190
|
39 |
WU H , FANG L C , YU Q , et al. Learning robust point representation for 3D non-rigid shape retrieval. IEEE Transactions on Multimedia, 2024, 26, 4430- 4444.
doi: 10.1109/TMM.2023.3323154
|
40 |
HUANG X T, NONG L P, ZHANG W H. A multimodal fusion network based on hypergraph for 3D shape retrieval[C]//Proceedings of the 22nd IEEE International Conference on Communication Technology. Washington D.C., USA: IEEE Press, 2022: 1682-1687.
|
41 |
GEZAWA A S , BELLO Z A , WANG Q C , et al. A voxelized point clouds representation for object classification and segmentation on 3D data. The Journal of Supercomputing, 2022, 78 (1): 1479- 1500.
doi: 10.1007/s11227-021-03899-x
|
42 |
LIANG Q , XIAO M M , SONG D . 3D shape recognition based on multi-modal information fusion. Multimedia Tools and Applications, 2021, 80 (11): 16173- 16184.
doi: 10.1007/s11042-019-08552-7
|