1 |
GANDHI A , ADHVARYU K , PORIA S , et al. Multimodal sentiment analysis: a systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. Information Fusion, 2023, 91, 424- 444.
|
2 |
赫晓慧, 宋定君, 李盼乐, 等. 融合多尺度特征的遥感影像道路提取方法. 计算机工程, 2022, 48 (8): 196- 205.
doi: 10.19678/j.issn.1000-3428.0062451
|
|
HE X H , SONG D J , LI P L , et al. Remote sensing image road extraction method combined with multi-scale features. Computer Engineering, 2022, 48 (8): 196- 205.
doi: 10.19678/j.issn.1000-3428.0062451
|
3 |
LU H , ZHU Y , YIN M , et al. Multimodal fusion convolutional neural network with cross-attention mechanism for internal defect detection of magnetic tile. IEEE Access, 2022, 10, 60876- 60886.
|
4 |
DU G , ZHANG L , SU K , et al. A multimodal fusion fatigue driving detection method based on heart rate and PERCLOS. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (11): 21810- 21820.
|
5 |
ROY S K , DERIA A , HONG D , et al. Multimodal fusion transformer for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 5515620.
|
6 |
赵恩源, 宋宁, 聂婕, 等. 面向遥感视觉问答的尺度引导融合推理网络. 软件学报, 2024, 35 (5): 2133- 2149.
|
|
ZHAO E Y , SONG N , NIE J , et al. Scale-guided fusion inference network for remote sensing visual question answering. Journal of Software, 2024, 35 (5): 2133- 2149.
|
7 |
付琨, 王佩瑾, 冯瑛超, 等. 遥感跨模态智能解译: 模型、数据与应用. 中国科学: 信息科学, 2023, 53 (8): 1529- 1559.
|
|
FU K , WANG P J , FENG Y C , et al. Cross-modal remote sensing intelligent interpretation: method, data, and applications. Chinese Science Informationis, 2023, 53 (8): 1529- 1559.
|
8 |
孙汉淇, 潘晨, 何灵敏, 等. 多模态特征融合的遥感图像语义分割网络. 计算机工程与应用, 2022, 58 (24): 256- 264.
|
|
SUN H Q , PAN C , HE L M , et al. Remote sensing image semantic segmentation network based on multimodal feature fusion. Computer Engineering and Applications, 2022, 58 (24): 256- 264.
|
9 |
SUN Y , FU Z , SUN C , et al. Deep multimodal fusion network for semantic segmentation using remote sensing image and LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 5404418.
|
10 |
LIN T, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 936-944.
|
11 |
|
12 |
LIN T, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2017: 2999-3007.
|
13 |
KONG T, SUN F, HUANG W, et al. Deep feature pyramid reconfiguration for object detection[C]//Proceedings of Computer Vision-ECCV 2018. Berlin, Germany: Springer, 2018: 172-188.
|
14 |
|
15 |
GUO C, FAN B, ZHANG Q, et al. AugFPN: improving multi-scale feature learning for object detection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 12592-12601.
|
16 |
CHEN S , ZHAO J , ZHOU Y , et al. Info-FPN: An Informative Feature Pyramid Network for object detection in remote sensing images. Expert Systems with Applications, 2023, 214, 119132.
|
17 |
LI Z , LI E , XU T , et al. Feature alignment FPN for oriented object detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 6001705.
|
18 |
DONG X , QIN Y , GAO Y , et al. Attention-based multi-level feature fusion for object detection in remote sensing images. Remote Sensing, 2022, 14 (15): 3735.
|
19 |
WANG J W, XU C, YANG W, et al. A normalized gaussian Wasserstein distance for tiny object detection[EB/OL]. (2022-06-14)[2024-03-20]. https://arxiv.org/abs/2110.13389.
|
20 |
ZHANG J , LEI J , XIE W , et al. SuperYOLO: super resolution assisted object detection in multimodal remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 5605415.
|
21 |
YANG G, FENG W, JIN J, et al. Face mask recognition system with YOLOV5 based on image recognition[C]//Proceedings of 2020 IEEE 6th International Conference on Computer and Communications (ICCC). Washington D. C., USA: IEEE Press, 2020: 1398-1404.
|
22 |
WANG J, CHEN K, XU R, et al. CARAFE: content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 3007-3016.
|
23 |
RAZAKARIVONY S , JURIE F . Vehicle detection in aerial imagery : a small target detection benchmark. Journal of Visual Communication and Image Representation, 2016, 34, 187- 203.
|
24 |
PANG J , CHEN K , LI Q , et al. Towards balanced learning for instance recognition. International Journal of Computer Vision, 2021, 129 (5): 1376- 1393.
|
25 |
LIU Y , LI Q , YUAN Y , et al. ABNet: adaptive balanced network for multiscale object detection in remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 3133956.
|
26 |
|
27 |
SHARMA M , DHANARAJ M , KARNAM S , et al. YOLOrs: object detection in multimodal remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1497- 1508.
|
28 |
PHAM M T , COURTRAI L , FRIGUET C , et al. YOLO-fine: one-stage detector of small objects under various backgrounds in remote sensing Images. Remote Sensing, 2020, 12 (15): 2501.
|
29 |
FANG Q , WANG Z . Cross-modality attentive feature fusion for object detection in multispectral remote sensing imagery. Pattern Recognition, 2022, 130, 108786.
|
30 |
NIE J , SUN H , SUN X , et al. Cross-modal feature fusion and interaction strategy for CNN-transformer-based object detection in visual and infrared remote sensing imagery. IEEE Geoscience and Remote Sensing Letters, 2024, 21, 5000405.
|
31 |
SHEN J , CHEN Y , LIU Y , et al. ICAFusion: iterative cross-attention guided feature fusion for multispectral object detection. Pattern Recognition, 2024, 145, 109913.
|
32 |
LI K , WAN G , CHENG G , et al. Object detection in optical remote sensing images: a survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159, 296- 307.
|
33 |
CHENG G , HAN J , ZHOU P , et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 98, 119- 132.
|
34 |
ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 9756-9765.
|
35 |
|
36 |
LI X, WANG W, WU L, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[EB/OL]. (2020-06-08)[2024-03-20]. https://arxiv.org/abs/2006.04388.
|
37 |
REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39 (6): 1137- 1149.
|
38 |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4510-4520.
|
39 |
ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[EB/OL]. (2017-07-04)[2024-03-20]. https://arxiv.org/abs/1707.01083v2.
|
40 |
YANG Y , SUN X , DIAO W , et al. Adaptive knowledge distillation for lightweight remote sensing object detectors optimizing. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 5623715.
|
41 |
LI J , ZHANG Z , TIAN Y , et al. Target-guided feature super-resolution for vehicle detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 8020805.
|