1 |
FAWAZ H I , FORESTIER G , WEBER J , et al. Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 2019, 33 (4): 917- 963.
|
2 |
DU S D , LI T R , YANG Y , et al. Multivariate time series forecasting via attention-based encoder-decoder framework. Neurocomputing, 2020, 388, 269- 279.
|
3 |
余长宏, 陆雅, 王海鑫, 等. 基于滑动时间窗的物联网设备流量分类算法. 计算机工程, 2023, 49 (7): 259- 268.
doi: 10.19678/j.issn.1000-3428.0064882
|
|
YU C H , LU Y , WANG H X , et al. Traffic classification algorithm for IoT device based on sliding time window. Computer Engineering, 2023, 49 (7): 259- 268.
doi: 10.19678/j.issn.1000-3428.0064882
|
4 |
SONG Z N , YANG L J . Statistical inference for ARMA time series with moving average trend. Journal of Nonparametric Statistics, 2022, 34 (2): 357- 376.
|
5 |
TAVAKOLI N, SIAMI-NAMINI S, KHANGHAH M A, et al. Clustering time series data through autoencoder-based deep learning models[EB/OL]. [2023-12-17]. https://arxiv.org/abs/2004.07296.
|
6 |
LIU Z , ZHANG J L , LI Y . Towards better time series prediction with model-independent, low-dispersion clusters of contextual subsequence embeddings. Knowledge-Based Systems, 2022, 235, 107641.
|
7 |
ESLING P , AGON C . Multiobjective time series matching for audio classification and retrieval. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21 (10): 2057- 2072.
|
8 |
ERMSHAUS A , SCHÄFER P , LESER U . ClaSP: parameter-free time series segmentation. Data Mining and Knowledge Discovery, 2023, 37 (3): 1262- 1300.
|
9 |
BHATTACHARYA D , MUKHOTI J , KONAR A . Learning regularity in an economic time-series for structure prediction. Applied Soft Computing, 2019, 76, 31- 44.
|
10 |
FUCHS E , GRUBER T , NITSCHKE J , et al. Online segmentation of time series based on polynomial least-squares approximations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (12): 2232- 2245.
|
11 |
HAUZENBERGER N , HUBER F , KLIEBER K . Real-time inflation forecasting using non-linear dimension reduction techniques. International Journal of Forecasting, 2023, 39 (2): 901- 921.
|
12 |
HOSSEINI B, HAMMER B. Multiple-kernel dictionary learning for reconstruction and clustering of unseen multivariate time-series[EB/OL]. [2023-12-17]. https://arxiv.org/pdf/1903.01867.
|
13 |
LI L, LI W, LIAO J X, et al. Adaptive state continuity-based sparse inverse covariance clustering for multivariate time series[C]//Proceedings of the International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). Washington D.C., USA: IEEE Press, 2019: 68-74.
|
14 |
HALLAC D, VARE S, BOYD S, et al. Toeplitz inverse covariance-based clustering of multivariate time series data[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden: International Joint Conferences on Artificial Intelligence Organization, 2018: 1-8.
|
15 |
ZHU T F , LUO C , ZHANG Z H , et al. Minority oversampling for imbalanced time series classification. Knowledge-Based Systems, 2022, 247, 108764.
|
16 |
VISHWAKARMA G K , PAUL C , ELSAWAH A M . A hybrid feedforward neural network algorithm for detecting outliers in non-stationary multivariate time series. Expert Systems with Applications, 2021, 184, 115545.
|
17 |
AN S F , GAO X Y , JIANG M H , et al. Multivariate financial time series in the light of complex network analysis. Physica A: Statistical Mechanics and Its Applications, 2018, 503, 1241- 1255.
|
18 |
LI H L , LIU Z C . Multivariate time series clustering based on complex network. Pattern Recognition, 2021, 115, 107919.
|
19 |
李海林, 张丽萍. 时间序列数据挖掘中的聚类研究综述. 电子科技大学学报, 2022, 51 (3): 416- 424.
|
|
LI H L , ZHANG L P . Summary of clustering research in time series data mining. Journal of University of Electronic Science and Technology of China, 2022, 51 (3): 416- 424.
|
20 |
GUNJAL R , NAYYER S S , WAGH S R , et al. Granger causality for prediction in dynamic mode decomposition: application to power systems. Electric Power Systems Research, 2023, 225, 109865.
|
21 |
VIVAS E , ALLENDE-CID H , SALAS R . A systematic review of statistical and machine learning methods for electrical power forecasting with reported MAPE score. Entropy, 2020, 22 (12): 1412.
|
22 |
KARUNASINGHA D S K . Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 2022, 585, 609- 629.
|
23 |
刘扬, 王立虎, 杨礼波, 等. 改进EEMD-GRU混合模型在径流预报中的应用. 智能系统学报, 2022, 17 (3): 480- 487.
|
|
LIU Y , WANG L H , YANG L B , et al. Application of improved EEMD-GRU hybrid model in runoff forecasting. CAAI Transactions on Intelligent Systems, 2022, 17 (3): 480- 487.
|
24 |
陈斌, 周勇, 刘兵. 基于卷积双向长短期记忆网络的事件触发词抽取. 计算机工程, 2019, 45 (1): 153- 158.
doi: 10.19678/j.issn.1000-3428.0049801
|
|
CHEN B , ZHOU Y , LIU B . Event trigger word extraction based on convolutional bidirectional long short term memory network. Computer Engineering, 2019, 45 (1): 153- 158.
doi: 10.19678/j.issn.1000-3428.0049801
|
25 |
KURANI A , DOSHI P , VAKHARIA A , et al. A comprehensive comparative study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on stock forecasting. Annals of Data Science, 2023, 10 (1): 183- 208.
|
26 |
LIU Y , ZHANG Y , WANG Y , et al. A survey of visual Transformers. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (6): 7478- 7498.
|