1 |
逄涛, 张学敏, 姚亚洲, 等. 基于特征增强的光学遥感图像建筑物变化检测. 计算机工程, 2023, 49(4): 182- 187.
URL
|
|
FENG T, ZHANG X M, YAO Y Z, et al. Optical remote sensing image building change detection based on feature enhancement. Computer Engineering, 2023, 49(4): 182- 187.
URL
|
2 |
谢树春, 陈志华, 盛斌. 增强细节的RGB-IR多通道特征融合语义分割网络. 计算机工程, 2022, 48(10): 230-237, 244.
URL
|
|
XIE S C, CHEN Z H, SHENG B. Detail-enhanced RGB-IR multichannel feature fusion network for semantic segmentation. Computer Engineering, 2022, 48(10): 230-237, 244.
URL
|
3 |
刘鹏飞, 朱健晨, 万良易, 等. 低功耗异构计算架构的高光谱遥感图像分类研究. 计算机工程, 2022, 48(12): 9-15, 23.
URL
|
|
LIU P F, ZHU J C, WAN L Y, et al. Research on hyperspectral remote sensing image classification using low-power heterogeneous computing architecture. Computer Engineering, 2022, 48(12): 9-15, 23.
URL
|
4 |
张少杰, 罗琼, 韩志, 等. 基于边信息的高光谱图像恢复模型. 计算机应用研究, 2021, 38(10): 3166-3171, 3195.
|
|
ZHANG S J, LUO Q, HAN Z, et al. Hyperspectral image restoration model with side information. Application Research of Computers, 2021, 38(10): 3166-3171, 3195.
|
5 |
姚凯旋, 曹飞龙. 基于多输入密集连接神经网络的遥感图像时空融合算法. 模式识别与人工智能, 2019, 32(5): 429- 435.
|
|
YAO K X, CAO F L. Spatial-temporal fusion algorithm for remote sensing images based on multi-input dense connected neural network. Pattern Recognition and Artificial Intelligence, 2019, 32(5): 429- 435.
|
6 |
陈贵强, 何军. 自然场景下遥感图像超分辨率重建算法研究. 计算机科学, 2022, 49(2): 116- 122.
|
|
CHEN G Q, HE J. Study on super-resolution reconstruction algorithm of remote sensing images in natural scene. Computer Science, 2022, 49(2): 116- 122.
|
7 |
QI W, NICOLAS D, JEAN-YVES T. Fast fusion of multi-band images based on solving a sylvester equation. IEEE Transactions on Image Processing, 2015, 24(11): 4109- 4121.
doi: 10.1109/TIP.2015.2458572
|
8 |
黄伟, 许蒙恩, 徐国明, 等. 贝叶斯稀疏表示高光谱图像超分辨率方法. 计算机科学与探索, 2018, 12(12): 1987- 1995.
|
|
HUANG W, XU M G, XU G M, et al. Bayesian sparse representation for hyperspectral image super resolution. Journal of Frontiers of Computer Science & Technology, 2018, 12(12): 1987- 1995.
|
9 |
AKHTAR N, SHAFAIT F, MIAN A. Bayesian sparse representation for hyperspectral image super resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 3631-3640.
|
10 |
GHASRODASHTI E K, KARAMI A, HEYLEN R, et al. Spatial resolution enhancement of hyperspectral images using spectral unmixing and Bayesian sparse representation. Remote Sensing, 2017, 9(6): 541.
doi: 10.3390/rs9060541
|
11 |
ZHAO Y Q, YI C, YANG J X, et al. Spectral super-resolution based on matrix factorization and spectral dictionary[C]//Proceedings of the 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). Washington D.C., USA: IEEE Press, 2016: 1-6.
|
12 |
DIAN R W, LI S T, FANG L Y, et al. Multispectral and hyperspectral image fusion with spatial-spectral sparse representation. Information Fusion, 2019, 49, 262- 270.
doi: 10.1016/j.inffus.2018.11.012
|
13 |
DONG W S, FU F Z, SHI G M, et al. Hyperspectral image super-resolution via non-negative structured sparse representation. IEEE Transactions on Image Processing, 2016, 25(5): 2337- 2352.
doi: 10.1109/TIP.2016.2542360
|
14 |
DIAN R W, LI S T, FANG L Y, et al. Hyperspectral image super-resolution via local low-rank and sparse representations[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Washington D.C., USA: IEEE Press, 2018: 4003-4006.
|
15 |
LANARAS C, BALTASVIAS E, SCHINDLER K. Hyperspectral super-resolution by coupled spectral unmixing[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2015: 3586-3594.
|
16 |
刘永峰, 王年, 王峰, 等. 基于谱间相似性的高光谱图像稀疏超分辨率算法. 红外与激光工程, 2019, 48(S1): 181- 192.
|
|
LIU Y F, WANG N, WANG F, et al. Hyperspectral image super-resolution algorithm via sparse representation based on spectral similarity. Infrared and Laser Engineering, 2019, 48(S1): 181- 192.
|
17 |
ZHANG K, WANG M, YANG S Y, et al. Spatial-spectral-graph-regularized low-rank tensor decomposition for multispectral and hyperspectral image fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(4): 1030- 1040.
doi: 10.1109/JSTARS.2017.2785411
|
18 |
DIAN R W, FANG L Y, LI S T. Hyperspectral image super-resolution via non-local sparse tensor factorization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 5344-5353.
|
19 |
ZARE M, HELFROUSH M S, KAZEMI K, et al. Hyper-spectral and multispectral image fusion using coupled non-negative tucker tensor decomposition. Remote Sensing, 2021, 13(15): 2930.
doi: 10.3390/rs13152930
|
20 |
REN X X, LU L F, CHANUSSOT J. Toward super-resolution image construction based on joint tensor decomposition. Remote Sensing, 2020, 12(16): 2535.
doi: 10.3390/rs12162535
|
21 |
DIAN R W, LI S T, FANG L Y. Learning a low tensor-train rank representation for hyperspectral image super-resolution. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(9): 2672- 2683.
doi: 10.1109/TNNLS.2018.2885616
|
22 |
CHEN X A, GUO S Y, JIA H D, et al. Group sparsity regularized high order tensor for HSIs super-resolution[C]//Proceedings of International Conference on Intelligent Robotics and Applications. Berlin, Germany: Springer, 2022: 125-137.
|
23 |
PENG Y D, LI W S, LUO X B, et al. Hyperspectral image super-resolution via adaptive factor group sparsity regularization-based subspace representation. Remote Sensing, 2023, 15(19): 4847.
doi: 10.3390/rs15194847
|
24 |
YANG J X, ZHAO Y Q, CHAN J C W. Hyperspectral and multispectral image fusion via deep two-branches convolutional neural network. Remote Sensing, 2018, 10(5): 800.
doi: 10.3390/rs10050800
|
25 |
SUN W, REN K, MENG X, et al. MLR-DBPFN: a multi-scale low rank deep back projection fusion network for anti-noise hyperspectral and multispectral image fusion. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1- 14.
|